

Any concerns?  support@freenove.com

Welcome

Thank you for choosing Freenove products!

How to Start

When reading this, you should have downloaded the ZIP file for this product.

Unzip it and you will get a folder containing tutorials and related files. Please start with this PDF tutorial.

! Unzip the ZIP file instead of opening the file in the ZIP file directly.

! Do not move, delete or rename files in the folder just unzipped.

Get Support

Encounter problems? Don't worry! Refer to “TroubleShooting.pdf” or contact us.

When there are packaging damage, quality problems, questions encountering in use, etc., just send us an

email. We will reply to you within one working day and provide a solution.

support@freenove.com

Attention

Pay attention to safety when using and storing this product:

 This product is not suitable for children under 12 years of age because of small parts and sharp parts.

 Minors should use this product under the supervision and guidance of adults.

 This product contains small and sharp parts. Do not swallow, prick and scratch to avoid injury.

 This product contains conductive parts. Do not hold them to touch power supply and other circuits.

 To avoid personal injury, do not touch parts rotating or moving while working.

 The wrong operation may cause overheat. Do not touch and disconnect the power supply immediately.

 Operate in accordance with the requirements of the tutorial. Fail to do so may damage the parts.

 Store this product in a dry and dark environment. Keep away from children.

 Turn off the power of the circuit before leaving.

mailto:support@freenove.com

Any concerns?  support@freenove.com

About

Freenove provides open source electronic products and services.

Freenove is committed to helping customers learn programming and electronic knowledge, quickly

implement product prototypes, realize their creativity and launch innovative products. Our services include:

 Kits for learning programming and electronics

 Kits compatible with Arduino®, Raspberry Pi®, micro:bit®, ESP8266®, etc.

 Kits for robots, smart cars, drones, etc.

 Components, modules and tools

 Design and customization

To learn more about us or get our latest information, please visit our website:

http://www.freenove.com

Copyright

All the files provided in the ZIP file are released under Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 Unported License. You can find a copy of the license in the ZIP file.

It means you can use these files on your own derived works, in part or completely. But not for commercial

use.

Freenove® brand and logo are trademarks of Freenove Creative Technology Co., Ltd. Must not be used

without permission.

Other registered trademarks and their owners appearing in this document:

Arduino® is a trademark of Arduino LLC (https://www.arduino.cc/).

Raspberry Pi® is a trademark of Raspberry Pi Foundation (https://www.raspberrypi.org/).

micro:bit® is a trademark of Micro:bit Educational Foundation (https://www.microbit.org/).

ESPRESSIF® and ESP8266® are trademarks of ESPRESSIF Systems (Shanghai) Co., Ltd

(https://www.espressif.com/).

TM

http://www.freenove.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.arduino.cc/
https://www.raspberrypi.org/
https://www.microbit.org/
https://www.espressif.com/

Any concerns?  support@freenove.com

1 Contents

█ www.freenove.com

Contents

Welcome ... i

Contents .. 1

Prepare ... 4

ESP8266 .. 5

Chapter 0 Ready (Important) .. 8

0.1 Installing Thonny (Important) .. 8

0.2 Basic Configuration of Thonny .. 13

0.3 Installing CH340 (Important) .. 15

0.4 Burning Micropython Firmware (Important) ... 26

0.5 Testing codes (Important) ... 33

0.6 Thonny Common Operation .. 41

Chapter 1 LED (Important) .. 47

Project 1.1 Blink ... 47

Project 1.2 Blink ... 56

Chapter 2 Button & LED .. 65

Project 2.1 Button & LED .. 65

Project 2.2 MINI table lamp ... 73

Chapter 3 LED Bar ... 78

Project 3.1 Flowing Light .. 78

Chapter 4 Analog & PWM .. 84

Project 4.1 Breathing LED ... 84

Project 4.2 Meteor Flowing Light .. 92

Chapter 5 RGBLED ... 98

Project 5.1 Random Color Light ... 98

Project 5.2 Gradient Color Light...104

Chapter 6 NeoPixel ... 107

Project 6.1 NeoPixel ...107

Project 6.2 Rainbow Light...113

Chapter 7 Buzzer ... 116

http://www.freenove.com/

Any concerns?  support@freenove.com

Contents 2 www.freenove.com █

Project 7.1 Doorbell..116

Project 7.2 Alertor ...122

Chapter 8 Serial Communication .. 125

Project 8.1 Serial Print ..125

Project 8.2 Serial Read and Write ..129

Chapter 9 ADC Converter ... 131

Project 9.1 Read the Voltage of Potentiometer ..131

Chapter 10 Potentiometer & LED ... 137

Project 10.1 Soft Light ...137

Project 10.2 Color Light ..140

Project 10.3 Soft Rainbow Light ...144

Chapter 11 Photoresistor & LED ... 148

Project 11.1 NightLamp ..148

Chapter 12 Thermistor ... 153

Project 12.1 Thermometer ...153

Chapter 13 74HC595 & LED Bar Graph .. 158

Project 13.1 Flowing Water Light ...158

Chapter 14 74HC595 & 7-Segment Display. 164

Project 14.1 7-Segment Display. ...164

Chapter 15 Motor & Driver .. 170

Project 15.1 Control Motor with Potentiometer ...170

Chapter 19 Stepper Motor .. 179

Project 19.1 Stepping Motor ...179

Chapter 17 LCD1602 .. 187

Project 17.1 LCD1602 ..187

Chapter 18 Ultrasonic Ranging ... 194

Project 18.1 Ultrasonic Ranging ...194

Project 18.2 Ultrasonic Ranging ...200

Chapter 19 Infrared Remote .. 203

Project 19.1 Infrared Remote Control ..203

Project 19.2 Control LED through Infrared Remote ..209

http://www.freenove.com/

Any concerns?  support@freenove.com

3 Contents

█ www.freenove.com

Chapter 20 WiFi Working Modes ... 214

Project 20.1 Station mode ..214

Project 20.2 AP mode ..219

Project 20.3 AP+Station mode ...223

Chapter 21 TCP/IP ... 227

Project 21.1 As Client ...227

Project 21.2 As Server ..242

Chapter 22 Smart Home.. 248

Project 22.1 Control_LED_through_Web ...248

What’s next? .. 255

End of the Tutorial ... 255

http://www.freenove.com/

Any concerns?  support@freenove.com

Prepare 4 www.freenove.com █

Prepare

ESP8266 is a micro control unit with integrated Wi-Fi launched by Espressif, which features strong properties

and integrates rich peripherals. It can be designed and studied as an ordinary Single Chip Micyoco(SCM) chip,

or connected to the Internet and used as an Internet of Things device.

ESP8266 can be developed both either with C/C++ language or micropython language. In this tutorial, we

use micropython. With Micropython is as easy to learn as Python with little code, making it ideal for beginners.

Moreover, the code of ESP8266 is completely open-source, so beginners can quickly learn how to develop

and design IOT smart household products including smart curtains, fans, lamps and clocks.

We divide each project into four parts, namely Component List, Component Knowledge, Circuit and Code.

Component List helps you to prepare material for the experiment more quickly. Component Knowledge allows

you to quickly understand new electronic modules or components, while Circuit helps you understand the

operating principle of the circuit. And Code allows you to easily master the use of ESP8266 and its accessory

kit. After finishing all the projects in this tutorial, you can also use these components and modules to make

products such as smart household, smart cars and robots to transform your creative ideas into prototypes

and new and innovative products.

In addition, if you have any difficulties or questions with this tutorial or toolkit, feel free to ask for our quick

and free technical support through support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

5 Prepare

█ www.freenove.com

ESP8266

ESP8266 has PCB on-board antenna. The PCB on-board antenna is an integrated antenna in the chip module

itself, so it is convenient to carry and design.

PCB on-board antenna

In this tutorial, the ESP8266 development board is designed based on the PCB on-board antenna-packaged

ESP8266 module. The following tutorials will be based on the ESP8266 development board.

ESP8266 development board

http://www.freenove.com/

Any concerns?  support@freenove.com

Prepare 6 www.freenove.com █

The hardware interfaces of ESP8266 are distributed as follows:

Compare the left and right images. We've boxed off the resources on the ESP8266 in different colors to

facilitate your understanding of the ESP8266 development board.

Box color Corresponding resources introduction

GPIO pin

LED indicator

Reset button, Boot mode selection button

USB port

http://www.freenove.com/

Any concerns?  support@freenove.com

7 Prepare

█ www.freenove.com

NO. Pin Name Functional Description

1 RST Reset Pin, Active Low

2 ADC AD conversion, Input voltage range 0~3.3V, the value range is 0~1024.

3 EN Chip Enabled Pin, Active High

4 IO16 Connect with RST pin to wake up Deep Slee

5 IO14 GPIO14; HSPI_CLK

6 IO12 GPIO12; HSPI_MISO

7 IO13 GPIO13; HSPI_MOSI; UART0_CTS

8 VCC Module power supply pin, Voltage 3.0V ~ 3.6V

9 GND GND

10 IO15 GPIO15; MTDO; HSPICS; UART0_RTS

11 IO2 GPIO2; UART1_TXD

12 IO0 GPIO0;HSPI_MISO;I2SI_DATA

13 IO4 GPIO4

14 IO5 GPIO5;IR_R

15 RXD UART0_RXD; GPIO3

16 TXD UART0_TXD; GPIO1

Description of the ESP8266 series module boot mode:

Mode CH_PD(EN) RST GPIO15 GPIO0 GPIO2 TXD0

Download

mode

high high low low high high

Running

mode

high high low high high high

Notes: Some of the pins inside the module have been pulled or pulled down.

If you want to learn more about this, you can read the following files:

“Freenove_Super_Starter_Kit_for_ESP8266/Datasheet/esp-12s_datasheet_en.pdf”

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 8 www.freenove.com █

Chapter 0 Ready (Important)

Before starting building the projects, you need to make some preparation first, which is so crucial that you

must not skip.

0.1 Installing Thonny (Important)

Thonny is a free, open-source software platform with compact size, simple interface, simple operation and

rich functions, making it a Python IDE for beginners. In this tutorial, we use this IDE to develop ESP6266 during

the whole process.

Thonny supports various operating system, including Windows、Mac OS、Linux.

Downloading Thonny

Official website of Thonny: https://thonny.org

Open-source code repositories of Thonny: https://github.com/thonny/thonny

Follow the instruction of official website to install Thonny or click the links below to download and install.

(Select the appropriate one based on your operating system.)

Operating

System

Download links/methods

Windows https://github.com/thonny/thonny/releases/download/v3.2.7/thonny-3.2.7.exe

Mac OS https://github.com/thonny/thonny/releases/download/v3.2.7/thonny-3.2.7.pkg

Linux

The latest version:

Binary bundle for PC (Thonny+Python):

bash <(wget -O - https://thonny.org/installer-for-linux)

With pip:

pip3 install thonny

Distro packages (may not be the latest version):

Debian, Rasbian, Ubuntu, Mint and others:

sudo apt install thonny

Fedora:

sudo dnf install thonny

You can also open “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Software”, we have

prepared it in advance.

http://www.freenove.com/
https://thonny.org/
https://github.com/thonny/thonny
https://github.com/thonny/thonny/releases/download/v3.2.7/thonny-3.2.7.exe
https://github.com/thonny/thonny/releases/download/v3.2.7/thonny-3.2.7.pkg

Any concerns?  support@freenove.com

9 Chapter 0 Ready (Important)

█ www.freenove.com

Installing on Windows

The icon of Thonny after downloading is as below. Double click “thonny-3.2.7.exe”.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 10 www.freenove.com █

If you’re not familiar with computer software installation, you can simply keep clicking “Next” until the

installation completes.

If you want to change Thonny’s installation path, you can click “Browse” to modify it. After selecting installation

path, click “OK”.

If you do not want to change it, just click “Next”.

http://www.freenove.com/

Any concerns?  support@freenove.com

11 Chapter 0 Ready (Important)

█ www.freenove.com

Check “Create desktop icon” and then it will generate a shortcut on your desktop to facilitate you to open

Thonny later.

Click “install” to install the software.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 12 www.freenove.com █

During the installation process, you only need to wait for the installation to complete, and you msut not click

"Cancel", otherwise Thonny will fail to be installed.

Once you see the interface as below, Thonny has been installed successfully.

If you’ve check “Create desktop icon” during the installation process, you can see the below icon on your

desktop.

http://www.freenove.com/

Any concerns?  support@freenove.com

13 Chapter 0 Ready (Important)

█ www.freenove.com

0.2 Basic Configuration of Thonny

Click the desktop icon of Thonny and you can see the interface of it as follows:

Select “View” “Files” and “Shell”.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 14 www.freenove.com █

Menu Bar

File Management

Code Editor

Shell

http://www.freenove.com/

Any concerns?  support@freenove.com

15 Chapter 0 Ready (Important)

█ www.freenove.com

0.3 Installing CH340 (Important)

ESP8266 uses CH340 to download codes. So before using it, we need to install CH340 driver in our computers.

Windows

Check whether CH340 has been installed

1. Connect your computer and ESP8266 with a USB cable.

2. Turn to the main interface of your computer, select “This PC” and right-click to select “Manage”.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 16 www.freenove.com █

3. Click “Device Manager”. If your computer has installed CH340, you can see“USB-SERIAL CH340 (COMx)”.

And you can click here to move to the next step.

CH340 Port

http://www.freenove.com/

Any concerns?  support@freenove.com

17 Chapter 0 Ready (Important)

█ www.freenove.com

Installing CH340

1. First, download CH340 driver, click http://www.wch-ic.com/search?q=CH340&t=downloads to download

the appropriate one based on your operating system.

You can also open “Freenove_Super_Starter_Kit_for_ESP8266/CH340”, we have prepared the installation

package.

Windows

MAC

Linux

http://www.freenove.com/
http://www.wch-ic.com/search?q=CH340&t=downloads

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 18 www.freenove.com █

2. Open the folder “Freenove_Super_Starter_Kit_for_ESP8266/CH340/Windows/ch341ser”

3. Double click “CH341SER.EXE”.

http://www.freenove.com/

Any concerns?  support@freenove.com

19 Chapter 0 Ready (Important)

█ www.freenove.com

4. Click “INSTALL” and wait for the installation to complete.

5. Install successfully. Close all interfaces.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 20 www.freenove.com █

6. When ESP8266 is connected to computer, select “This PC”, right-click to select “Manage” and click

“Device Manager” in the newly pop-up dialog box, and you can see the following interface.

7. So far, CH340 has been installed successfully. Close all dialog boxes.

http://www.freenove.com/

Any concerns?  support@freenove.com

21 Chapter 0 Ready (Important)

█ www.freenove.com

MAC

First, download CH340 driver, click http://www.wch-ic.com/search?q=CH340&t=downloads to download the

appropriate one based on your operating system.

If you would not like to download the installation package, you can open

“Freenove_Super_Starter_Kit_for_ESP8266/CH340”, we have prepared the installation package.

Second, open the folder “Freenove_Super_Starter_Kit_for_ESP8266/CH340/MAC/”

Windows

MAC

Linux

http://www.freenove.com/
http://www.wch-ic.com/search?q=CH340&t=downloads

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 22 www.freenove.com █

Third, click Continue.

Fourth, click Install.

Run it.

http://www.freenove.com/

Any concerns?  support@freenove.com

23 Chapter 0 Ready (Important)

█ www.freenove.com

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 24 www.freenove.com █

Then, waiting Finsh.

Finally, restart your PC.

http://www.freenove.com/

Any concerns?  support@freenove.com

25 Chapter 0 Ready (Important)

█ www.freenove.com

If you still haven't installed the CH340 by following the steps above, you can view readme.pdf to install it.

ReadMe

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 26 www.freenove.com █

0.4 Burning Micropython Firmware (Important)

To run Python programs on ESP8266, we need to burn a firmware to ESP8266 first.

Downloading Micropython Firmware

Official website of microPython: http://micropython.org/

Webpage listing firmware of microPython for ESP8266: https://micropython.org/download/esp8266/

Firmware used in this tutorial is esp8266-20220117-v1.18.bin

Click the following link to download directly:

https://micropython.org/resources/firmware/esp8266-20220117-v1.18.bin

This file is also provided in our data folder "Freenove_Super_Starter_Kit_for_ESP8266

/Python/Python_Firmware".

http://www.freenove.com/
http://micropython.org/
https://micropython.org/download/esp32/

Any concerns?  support@freenove.com

27 Chapter 0 Ready (Important)

█ www.freenove.com

Burning a Micropython Firmware

Connect your computer and ESP8266 with a USB cable.

Make sure that the driver has been installed successfully and that it can recognize COM port correctly. Open

device manager and expand “Ports”.

Note: the port of different people may be different, which is a normal situation.

COMx

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 28 www.freenove.com █

1. Open Thonny, click “run” and select “Select interpreter...””

http://www.freenove.com/

Any concerns?  support@freenove.com

29 Chapter 0 Ready (Important)

█ www.freenove.com

2. Select “Micropython (ESP8266)”，select “USB-SERIAL CH340 (COM4)”，and then click the long button

under “Firmware”.

3. The following dialog box pops up. Select “USB-SERIAL CH340 (COM4)” for “Port” and then click

“Browse...”. Select the previous prepared microPython firmware “esp8266-20220117-v1.18.bin”. Check

“Erase flash before installing” and click “install” to wait for the prompt of finishing installation.

Here we need to select Flash mode.On our ESP8266 development board, choose "DIO" mode or "DOUT"

mode for better compatibility.If the ESP8266 module is abnormal, check whether the ESP8266 module

works in the two modes.

Flash works in DOUT, DIO, QOUT, and QIO modes.

1.DOUT: Address is input in 1-line mode and data is output in 2-line mode.

2.DIO: Address is input in 2-line mode and data is output in 2-line mode.

3.QOUT: Address is input in 1-line mode and data is output in 4-line mode.

4.QIO: Address is input in 4-line mode and data is output in 4-line mode.

If you need to use the QIO mode, ensure that the Flash supports the QIO mode.

Click

Click

Click

http://www.freenove.com/
https://micropython.org/download/esp32/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 30 www.freenove.com █

4. Wait for the installation to be done.

Click

Click
Click

Click

Click

http://www.freenove.com/

Any concerns?  support@freenove.com

31 Chapter 0 Ready (Important)

█ www.freenove.com

After burning the Micropython firmware, "shell" will display some garbled characters, please do not worry, the

garbled characters are displayed as follows:

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 32 www.freenove.com █

When the ESP8266 is powered on, the default baud rate is 74880. The default communication and serial port

in the ESP8266 firmware is 115200. So if you set the serial port to 74880, this time can be displayed normally.

Here, we use The Arduino IDE serial port tool for output and display. The details are as follows:

5. Close all dialog boxes, turn to main interface and click “STOP”. As shown in the illustration below.

Ignore the garbled part here.

6. So far, all the preparations have been made.

/：Root directory

Inter space of ESP8266,

used to save files.\

STOP Button

http://www.freenove.com/

Any concerns?  support@freenove.com

33 Chapter 0 Ready (Important)

█ www.freenove.com

0.5 Testing codes (Important)

Testing Shell Command

Enter “print('hello world')” in “Shell” and press Enter.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 34 www.freenove.com █

Running Online

ESP8266 needs to be connected to a computer when it is run online. Users can use Thonny to writer and

debug programs.

1. Open Thonny and click “Open…”.

2. On the newly pop-up window, click “This computer”.

Open…

Click

http://www.freenove.com/

Any concerns?  support@freenove.com

35 Chapter 0 Ready (Important)

█ www.freenove.com

In the new dialog box, select “HelloWorld.py” in

“Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes/00.0_HelloWorld” folder.

Click “Run current script” to execute the program and “Hello World” will be printed in “Shell”.

Note：When running online, if you press the reset key of ESP8266, user’s code will not be executed again. If

you wish to run the code automatically after resetting the code, please refer to the following Running Offline.

Click

Click

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 36 www.freenove.com █

Running Offline（Important）

After ESP8266 is reset, it runs the file boot.py in root directory first and then runs file main.py, and finally, it

enters “Shell”. Therefore, to make ESP8266 execute user’s programs after resetting, we need to add a guiding

program in boot.py to execute user’s code.

1. Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to

disk(D) in advance with the path of “D:/Micropython_Codes”. Open “Thonny”.

2. Expand “00.1_Boot” in the “Micropython_Codes” in the directory of disk(D), and double-click boot.py,

which is provided by us to enable programs in “MicroPython device” to run offline.

http://www.freenove.com/

Any concerns?  support@freenove.com

37 Chapter 0 Ready (Important)

█ www.freenove.com

If you want your written programs to run offline, you need to upload boot.py we provided and all your codes

to “MicroPython device” and press ESP8266’s reset key. Here we use programs 00.0 and 00.1 as examples.

Select “boot.py”, right-click to select “Upload to /”.

No code has been uploaded.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 38 www.freenove.com █

Similarly, upload “HelloWorld.py” to “MicroPython device”.

boot.py has been uploaded here.

http://www.freenove.com/

Any concerns?  support@freenove.com

39 Chapter 0 Ready (Important)

█ www.freenove.com

3. Press the reset key and in the box of the illustration below, you can see the code is executed.

When you press the Reset key to run the offline code, the program will continue to execute while the ESP8266

is powered on.

When you run offline code, you can exit the running program by pressing "CTRL" and "C" at the same time.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 40 www.freenove.com █

Before pressing the keyboard, click "Shell" with the mouse, and then press the keyboard key.

When your "Shell" is unresponsive or abnormal, you can exit the running program by pressing "CTRL" and "C"

simultaneously.

If the ESP8266 does not work properly, you can press CTRL and C at the same time to observe whether the

Shell responds. If the ESP8266 still does not work properly, you can also rewrite the Micropython firmware

and perform related operations again.

Click

Click

http://www.freenove.com/

Any concerns?  support@freenove.com

41 Chapter 0 Ready (Important)

█ www.freenove.com

0.6 Thonny Common Operation

Uploading Code to ESP8266

For convenience, we take the opertation on “boot.py” as an example here. We have added “boot.py” to every

code directory. Each time when ESP8266 restarts, if there is a “boot.py” in the root directory, it will execute

this code first.

Select “Blink.py” in “01.1_Blink”, right-click your mouse and select “Upload to /” to upload code to ESP8266’s

root directory.

boot.py

Codes in ESP8266’s

root directory will

be executed

automatically.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 42 www.freenove.com █

Downloading Code to Computer

Select “boot.py” in “MicroPython device”, right-click to select “Download to ...” to download the code to your

computer.

Deleting Files from ESP8266’s Root Directory

Select “boot.py” in “MicroPython device”, right-click it and select “Delete” to delete “boot.py” from ESP8266’s

root directory.

http://www.freenove.com/

Any concerns?  support@freenove.com

43 Chapter 0 Ready (Important)

█ www.freenove.com

Deleting Files from your Computer Directory

Select “boot.py” in “00.1_Boot”, right-click it and select “Move to Recycle Bin” to delete it from “00.1_Boot”.

Creating and Saving the code

Click “File”“New” to create and write codes.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 44 www.freenove.com █

Enter codes in the newly opened file. Here we use codes of “01.1_Blink.py” as an example.

Click “Save” on the menu bar. You can save the codes either to your computer or to ESP8266.

Save

http://www.freenove.com/

Any concerns?  support@freenove.com

45 Chapter 0 Ready (Important)

█ www.freenove.com

Select “MicroPython device”, enter “main.py” in the newly pop-up window and click “OK”.

You can see that codes have been uploaded to ESP8266.

Click

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 0 Ready (Important) 46 www.freenove.com █

Disconnect and reconnect USB cable, and you can see that LED is ON for one second and then OFF for one

second, which repeats in an endless loop.

2，Run current script

1，Stop/Restart backend

This indicates

that the

conection is

successful.

http://www.freenove.com/

Any concerns?  support@freenove.com

47 Chapter 1 LED (Important)

█ www.freenove.com

Chapter 1 LED (Important)

This chapter is the Start Point in the journey to build and explore ESP8266 electronic projects. We will start

with simple “Blink” project.

Project 1.1 Blink

In this project, we will use ESP8266 to control blinking a common LED.

If you have not yet installed Thonny, click here.

If you have not yet downloaded Micropython Firmware, click here.

If you have not yet loaded Micropython Firmware, click here.

Component List

ESP8266 x1

USB cable

Power

ESP8266 needs 5v power supply. In this tutorial, we need connect ESP8266 development board to computer

via USB cable to power it and program it. We can also use other 5v power source to power it.

In the following projects, we only use USB cable to power ESP8266 development board by default.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 1 LED (Important) 48 www.freenove.com █

Code

Codes used in this tutorial are saved in “Freenove_Super_Starter_Kit_for_ESP8266/Python/

Python_Codes”. You can move the codes to any location. For example, we save the codes in Disk(D) with

the path of “D:/Micropython_Codes”.

01.1_Blink

Open “Thonny”，click “This computer”“D:”“Micropython_Codes”.

Expand folder “01.1_Blink” and double click “Blink.py” to open it. As shown in the illustration below.

Make sure ESP8266 is properly connected to your computer. Click “Stop/Restart backend” or press the reset

button, and then wait to see what interface will show up.

http://www.freenove.com/

Any concerns?  support@freenove.com

49 Chapter 1 LED (Important)

█ www.freenove.com

Click “Run current script” shown in the box above，the code starts to be executed and the LED in the

circuit starts to blink.

Note:

This is the code running online. If you disconnect USB cable and repower ESP8266 or press its reset key, LED

stops blinking and the following messages will be displayed in Thonny.

2，Run current script

1，Stop/Restart backend

This indicates

that the

conection is

successful.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 1 LED (Important) 50 www.freenove.com █

Uploading code to ESP8266

As shown in the following illustration, right-click the file Blink.py and select “Upload to /” to upload code to

ESP8266.

http://www.freenove.com/

Any concerns?  support@freenove.com

51 Chapter 1 LED (Important)

█ www.freenove.com

Upload boot.py in the same way.

Press the reset key of ESP8266 and you can see LED is ON for one second and then OFF for one second,

which repeats in an endless loop.

Note：

Codes here is run offline. If you want to stop running offline and enter Shell, just click “Stop” in Thonny.

Stop/Restart backend

Make sure you have

uploaded Blink.py and

boot.py here,

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 1 LED (Important) 52 www.freenove.com █

If you have any concerns, please contact us via: support@freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

from time import sleep_ms

from machine import Pin

led=Pin(2,Pin.OUT) #create LED object from pin2,Set Pin2 to output

try:

 while True:

 led.value(1) #Set led turn on

 sleep_ms(1000)

 led.value(0) #Set led turn off

 sleep_ms(1000)

except:

 pass

Each time a new file is opened, the program will be executed from top to bottom. When encountering a loop

construction, it will execute the loop statement according to the loop condition.

Setup

Loop

1

2

3

4

5

6

…

11

12

from time import sleep_ms

from machine import Pin

led=Pin(2,Pin.OUT) #create LED object from pin2,Set Pin2 to output

try:

while True:

 ...

except:

 pass

Print() function is used to print data to Terminal. It can be executed in Terminal directly or be written in a

Python file and executed by running the file.

 print(“Hello world!”)

Each time when using the functions of ESP8266, you need to import modules corresponding to those

functions: Import sleep_ms module of time module and Pin module of machine module.

1

2

from time import sleep_ms

from machine import Pin

Configure GPIO2 of ESP8266 to output mode and assign it to an object named “led”.

4 led=Pin(2,Pin.OUT) #create LED object from pin2,Set Pin2 to output

It means that from now on, LED represents GPIO2 that is in output mode.

Set the value of LED to 1 and GPIO2 will output high level.

7 led.value(1) #Set led turn on

Set the value of LED to 0 and GPIO2 will output low level.

9 led.value(0) #Set led turn on

Execute codes in a while loop.

6

…

while True:

 …

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

53 Chapter 1 LED (Important)

█ www.freenove.com

Put statements that may cause an error in “try” block and the executing statements when an error occurs in

“except” block. In general, when the program executes statements, it will execute those in “try” block.

However, when an error occurs to ESP8266 due to some interference or other reasons, it will execute

statements in “except” block.

“Pass” is an empty statement. When it is executed, nothing happens. It is useful as a placeholder to make the

structure of a program look better.

5

…

11

12

try:

...

except:

 pass

The single-line comment of Micropython starts with a “#” and continues to the end of the line. Comments

help us to understand code. When programs are running, Thonny will ignore comments.

9 #Set led turn on

MicroPython uses indentations to distinguish different blocks of code instead of braces. The number of

indentations is changeable, but it must be consistent throughout one block. If the indentation of the same

code block is inconsistent, it will cause errors when the program runs.

6

7

8

9

10

 while True:

 led.value(1) #Set led turn on

 sleep_ms(1000)

 led.value(0) #Set led turn off

 sleep_ms(1000)

How to import python files

Whether to import the built-in python module or to import that written by users, the command “import” is

needed.

If you import the module directly you should indicate the module to which the function or attribute belongs

when using the function or attribute (constant, variable) in the module. The format should be: <module

name>.<function or attribute>, otherwise an error will occur.

If you only want to import a certain function or attribute in the module, use the from...import statement .

The format is as follows.

When using “from...import” statement to import function, to avoid conflicts and for easy understanding,

you can use “as” statement to rename the imported function, as follows.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 1 LED (Important) 54 www.freenove.com █

Reference

Class machine

Before each use of the machine module, please add the statement “import machine” to the top of python

file.

machine.freq(freq_val): When freq_val is not specified, it is to return to the current CPU frequency;

Otherwise, it is to set the current CPU frequency.

freq_val: 80000000(80MHz)、160000000(160MHz)、240000000(240MHz)

machine.reset(): A reset function. When it is called, the program will be reset.

machine.unique_id(): Obtains MAC address of the device.

machine.idle(): Turns off any temporarily unused functions on the chip and its clock, which is useful to

reduce power consumption at any time during short or long periods.

machine.disable_irq(): Disables interrupt requests and return the previous IRQ state. The disable_irq ()

function and enable_irq () function need to be used together; Otherwise the machine will crash and

restart.

machine.enable_irq(state): To re-enable interrupt requests. The parameter state should be the value that

was returned from the most recent call to the disable_irq() function

machine.time_pulse_us(pin, pulse_level, timeout_us=1000000):

Tests the duration of the external pulse level on the given pin and returns the duration of the external

pulse level in microseconds. When pulse level = 1, it tests the high level duration; When pulse level = 0, it

tests the low level duration.

If the setting level is not consistent with the current pulse level, it will wait until they are consistent, and

then start timing. If the set level is consistent with the current pulse level, it will start timing immediately.

When the pin level is opposite to the set level, it will wait for timeout and return “-2”. When the pin

level and the set level is the same, it will also wait timeout but return “-1”. timeout_us is the duration of

timeout.

http://www.freenove.com/

Any concerns?  support@freenove.com

55 Chapter 1 LED (Important)

█ www.freenove.com

Class Pin(id[, mode, pull, value])

Before each use of the Pin module, please add the statement “from machine import Pin” to the top of

python file.

id: Arbitrary pin number

mode: Mode of pins

 Pin.IN: Input Mode

 Pin.OUT: Output Mode

 Pin.OPEN_DRAIN: Open-drain Mode

Pull: Whether to enable the internal pull up and down mode

 None: No pull up or pull down resistors

 Pin.PULL_UP: Pull-up Mode, outputting high level by default

 Pin.PULL_DOWN: Pull-down Mode, outputting low level by default

Value: State of the pin level, 0/1

Pin.init(mode, pull): Initialize pins

Pin.value([value]): Obtain or set state of the pin level, return 0 or 1 according to the logic level of pins.

Without parameter, it reads input level. With parameter given, it is to set output level.

value: It can be either True/False or 1/0.

Pin.irq(trigger, handler): Configures an interrupt handler to be called when the pin level meets a condition.

trigger:

 Pin.IRQ_FALLING: interrupt on falling edge

 Pin.IRQ_RISING: interrupt on rising edge

 3: interrupt on both edges

 Handler: callback function

Class time

Before each use of the time module, please add the statement “import time” to the top of python file

time.sleep(sec): Sleeps for the given number of seconds

sec: This argument should be either an int or a float.

time.sleep_ms(ms): Sleeps for the given number of milliseconds, ms should be an int.

time.sleep_us(us): Sleeps for the given number of microseconds, us should be an int.

time.time(): Obtains the timestamp of CPU, with second as its unit.

time.ticks_ms(): Returns the incrementing millisecond counter value, which recounts after some values.

time.ticks_us(): Returns microsecond

time.ticks_cpu(): Similar to ticks_ms() and ticks_us(), but it is more accurate(return clock of CPU).

time.ticks_add(ticks, delta): Gets the timestamp after the offset.

 ticks: ticks_ms()、ticks_us()、ticks_cpu()

delta: Delta can be an arbitrary integer number or numeric expression

time.ticks_diff(old_t, new_t): Calculates the interval between two timestamps, such as ticks_ms(), ticks_us()

or ticks_cpu().

 old_t: Starting time

new_t: Ending time

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 1 LED (Important) 56 www.freenove.com █

Project 1.2 Blink

In this project, we will use ESP8266 to control blinking a common LED.

Component List

ESP8266 x1

USB cable

Breadboard x1

LED x1

Resistor 220Ω x1

Jumper wire M/M x3

Component knowledge

LED

An LED is a type of diode. All diodes only work if current is flowing in the correct direction and have two Poles.

An LED will only work (light up) if the longer pin (+) of LED is connected to the positive output from a power

source and the shorter pin is connected to the negative (-). Negative output is also referred to as Ground

(GND). This type of component is known as “Polar” (think One-Way Street).

http://www.freenove.com/

Any concerns?  support@freenove.com

57 Chapter 1 LED (Important)

█ www.freenove.com

All common 2 lead diodes are the same in this respect. Diodes work only if the voltage of its positive electrode

is higher than its negative electrode and there is a narrow range of operating voltage for most all common

diodes of 1.9 and 3.4V. If you use much more than 3.3V the LED will be damaged and burn out.

Note: LEDs cannot be directly connected to a power supply, which usually ends in a damaged component. A

resistor with a specified resistance value must be connected in series to the LED you plan to use.

Resistor

Resistors use Ohms (Ω) as the unit of measurement of their resistance (R). 1MΩ=1000kΩ, 1kΩ=1000Ω.

A resistor is a passive electrical component that limits or regulates the flow of current in an electronic circuit.

On the left, we see a physical representation of a resistor, and the right is the symbol used to represent the

presence of a resistor in a circuit diagram or schematic.

The bands of color on a resistor is a shorthand code used to identify its resistance value. For more details of

resistor color codes, please refer to the appendix of this tutorial.

With a fixed voltage, there will be less current output with greater resistance added to the circuit. The

relationship between Current, Voltage and Resistance can be expressed by this formula: I=V/R known as

Ohm’s Law where I = Current, V = Voltage and R = Resistance. Knowing the values of any two of these

allows you to solve the value of the third.

In the following diagram, the current through R1 is: I=U/R=5V/10kΩ=0.0005A=0.5mA.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 1 LED (Important) 58 www.freenove.com █

WARNING: Never connect the two poles of a power supply with anything of low resistance value (i.e. a metal

object or bare wire) this is a Short and results in high current that may damage the power supply and electronic

components.

Note: Unlike LEDs and Diodes, Resistors have no poles and re non-polar (it does not matter which direction

you insert them into a circuit, it will work the same)

Breadboard

Here we have a small breadboard as an example of how the rows of holes (sockets) are electrically attached.

The left picture shows the way to connect pins. The right picture shows the practical internal structure.

Power

ESP8266 needs 5v power supply. In this tutorial, we need connect ESP8266 to computer via USB cable to

power it and program it. We can also use other 5v power source to power it.

Later, we only use USB cable to power ESP8266 in default.

http://www.freenove.com/

Any concerns?  support@freenove.com

59 Chapter 1 LED (Important)

█ www.freenove.com

Circuit

First, disconnect all power from the ES8266. Then build the circuit according to the circuit and hardware

diagrams. After the circuit is built and verified correct, connect the PC to ESP8266.

CAUTION: Avoid any possible short circuits (especially connecting 5V or GND, 3.3V and GND)! WARNING: A

short circuit can cause high current in your circuit, create excessive component heat and cause permanent

damage to your hardware!

Schematic diagram

Hardware connection. If you need any support, please contact us via: support@freenove.com

Code

Codes used in this tutorial are saved in “Freenove_Super_Starter_Kit_for_ESP8266/Python/

Python_Codes”. You can move the codes to any location. For example, we save the codes in Disk(D) with

the path of “D:/Micropython_Codes”.

Longer Pin

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 1 LED (Important) 60 www.freenove.com █

01.2_Blink

Open “Thonny”，click “This computer”“D:”“Micropython_Codes”.

Expand folder “01.2_Blink” and double click “Blink.py” to open it. As shown in the illustration below.

Make sure ESP8266 has been connected with the computer with ESP8266 correctly. Click “Stop/Restart

backend” or press the reset button, and then wait to see what interface will show up.

http://www.freenove.com/

Any concerns?  support@freenove.com

61 Chapter 1 LED (Important)

█ www.freenove.com

Click “Run current script” shown in the box above，the code starts to be executed and the LED in the

circuit starts to blink.

Note:

This is the code running online. If you disconnect USB cable and repower ESP8266 or press its reset key, LED

stops blinking and the following messages will be displayed in Thonny.

Uploading code to ESP8266

As shown in the following illustration, right-click the file Blink.py and select “Upload to /” to upload code to

ESP8266.

led.value(1) led.value(0)

2，Run current script

1，Stop/Restart backend

This indicates

that the

conection is

successful.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 1 LED (Important) 62 www.freenove.com █

http://www.freenove.com/

Any concerns?  support@freenove.com

63 Chapter 1 LED (Important)

█ www.freenove.com

Upload boot.py in the same way.

Press the reset key of ESP8266 and you can see LED is ON for one second and then OFF for one second,

which repeats in an endless loop.

Note：

Codes here is run offline. If you want to stop running offline and enter Shell, just click “Stop” in Thonny.

If you have any concerns, please contact us via: support@freenove.com

Stop/Restart backend

Make sure you have

uploaded Blink.py and

boot.py here.

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

Chapter 1 LED (Important) 64 www.freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

from time import sleep_ms

from machine import Pin

led=Pin(4,Pin.OUT) #create LED object from pin2,Set Pin2 to output

try:

 while True:

 led.value(1) #Set led turn on

 sleep_ms(1000)

 led.value(0) #Set led turn off

 sleep_ms(1000)

except:

 pass

http://www.freenove.com/

Any concerns?  support@freenove.com

65 Chapter 2 Button & LED

█ www.freenove.com

Chapter 2 Button & LED

Usually, there are three essential parts in a complete automatic control device: INPUT, OUTPUT, and CONTROL.

In last section, the LED module was the output part and ESP8266 was the control part. In practical applications,

we not only make LEDs flash, but also make a device sense the surrounding environment, receive instructions

and then take the appropriate action such as LEDs light up, make a buzzer turn ON and so on.

Next, we will build a simple control system to control an LED through a push button switch.

Project 2.1 Button & LED

In the project, we will control the LED state through a Push Button Switch. When the button is pressed, our

LED will turn ON, and when it is released, the LED will turn OFF. This describes a Momentary Switch.

Input:

switches, sensors

and etc.

Control:

ESP8266,

RPI, Arduino,

MCU and etc.

Output:

LED, buzzer,

motor and etc.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 2 Button & LED 66 www.freenove.com █

Component List

ESP8266 x1

USB cable

Breadboard x1

Jumper wire M/M x6

LED x1

Resistor 220Ω x1

Resistor 10kΩ x2

Push button x1

http://www.freenove.com/

Any concerns?  support@freenove.com

67 Chapter 2 Button & LED

█ www.freenove.com

Component knowledge

Push button

This type of Push Button Switch has 4 pins (2 Pole Switch). Two pins on the left are connected, and both left

and right sides are the same per the illustration:

When the button on the switch is pressed, the circuit is completed (your project is Powered ON).

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 2 Button & LED 68 www.freenove.com █

Code

This project is designed to learn to control an LED with a push button switch. First, we need to read the state

of the switch and then decide whether the LED is turned on or not based on it.

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”，click “This computer”  “D:”  “Micropython_Codes”  “02.1_ButtonAndLed” and

double click “ButtonAndLed.py”.

02.1_ButtonAndLed

Click “Run current script” shown in the box of the above illustration, press the push button switch, LED

turns ON; release the switch, LED turns OFF.

click

http://www.freenove.com/

Any concerns?  support@freenove.com

69 Chapter 2 Button & LED

█ www.freenove.com

Upload Code to ESP8266

As shown in the following illustration, right-click file 02.1_ButtonAndLed and select “Upload to /” to upload

code to ESP8266.

Upload boot.py in the same way.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 2 Button & LED 70 www.freenove.com █

Make sure you have

uploaded ButtonAndLed.py

andboot.py here.

http://www.freenove.com/

Any concerns?  support@freenove.com

71 Chapter 2 Button & LED

█ www.freenove.com

Press ESP8266’s reset key, and then push the button switch, LED turns ON; Push the button again, LED turns

OFF.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

from machine import Pin

led = Pin(4, Pin.OUT)

#create button object from pin5,Set Pin5 to Input

button = Pin(5, Pin.IN,Pin.PULL_UP)

try:

 while True:

 if not button.value():

 led.value(1) #Set led turn on

 else:

 led.value(0) #Set led turn off

except:

 pass

In this project, we use the Pin module of the machine, so before initializing the Pin, we need to import this

module first.

1 from machine import Pin

In the circuit connection, LED and Button are connected with GPIO4 and GPIO5 respectively, so define led

and button as 4 and 5 respectively.

3

4

5

6

led = Pin(4, Pin.OUT)

#create button object from pin5,Set Pin5 to Input

button = Pin(5, Pin.IN,Pin.PULL_UP)

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 2 Button & LED 72 www.freenove.com █

Read the pin state of button with value() function. Press the button switch, the function returns low level and

the result of “if” is true, and then LED will be turned ON; Otherwise, LED is turned OFF.

9

10

11

12

13

 while True:

 if not button.value():

 led.value(1) #Set led turn on

 else:

 led.value(0) #Set led turn off

If statement is used to execute the next statement when a certain condition is proved to be true (or non0). It

is often used together with “else” statement, which judges other statements except the if statement. If you

need to judge if the result of a condition is 0, you can use if not statement.

10

11

12

13

if not button.value():

 …

else:

 …

http://www.freenove.com/

Any concerns?  support@freenove.com

73 Chapter 2 Button & LED

█ www.freenove.com

Project 2.2 MINI table lamp

We will also use a Push Button Switch, LED and ESP8266 to make a MINI Table Lamp but this will function

differently: Press the button, the LED will turn ON, and pressing the button again, the LED turns OFF. The ON

switch action is no longer momentary (like a door bell) but remains ON without needing to continually press

on the Button Switch.

First, let us learn something about the push button switch.

Debounce for Push Button

When a Momentary Push Button Switch is pressed, it will not change from one state to another state

immediately. Due to tiny mechanical vibrations, there will be a short period of continuous buffeting before it

completely reaches another state too fast for Humans to detect but not for computer microcontrollers. The

same is true when the push button switch is released. This unwanted phenomenon is known as “bounce”.

Therefore, if we can directly detect the state of the Push Button Switch, there are multiple pressing and

releasing actions in one pressing cycle. This buffeting will mislead the high-speed operation of the

microcontroller to cause many false decisions. Therefore, we need to eliminate the impact of buffeting. Our

solution: to judge the state of the button multiple times. Only when the button state is stable (consistent) over

a period of time, can it indicate that the button is actually in the ON state (being pressed).

This project needs the same components and circuits as we used in the previous section.

Ideal state

Virtual state

press stable release stable

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 2 Button & LED 74 www.freenove.com █

Code

02.2_Tablelamp

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”，click “This computer”  “D:”  “Micropython_Codes”  “02.2_TableLamp”and double

click “TableLamp.py”.

Click “Run current script” shown in the box of the above illustration, press the push button switch, LED

turns ON; press it again, LED turns OFF.

If you have any concerns, please contact us via: support@freenove.com

Click

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

75 Chapter 2 Button & LED

█ www.freenove.com

Upload code to ESP8266

As shown in the following illustration, right-click file 02.2_TableLamp and select “Upload to /” to upload code

to ESP8266.

Upload boot.py in the same way.

Make sure you have

uploaded TableLamp.py and

boot.py here

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 2 Button & LED 76 www.freenove.com █

Press ESP8266’s reset key, and then push the button switch, LED turns ON; Push the button again, LED turns

OFF.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

import time

from machine import Pin

led = Pin(4, Pin.OUT)

button = Pin(5, Pin.IN, Pin.PULL_UP)

def reverseGPIO():

 if led.value():

 led.value(0)

 else:

 led.value(1)

while True:

 if not button.value():

 time.sleep_ms(20)

 if not button.value():

 reverseGPIO()

 while not button.value():

 time.sleep_ms(20)

When the button is detected to be pressed, delay 20ms to avoid the effect of bounce, and then check whether

the button has been pressed again. If so, the conditional statement will be executed, otherwise it will not be

executed.

13

14

15

16

17

18

19

while True:

 if not button.value():

 time.sleep_ms(20)

 if not button.value():

 reverseGPIO()

 while not button.value():

 time.sleep_ms(20)

Customize a function and name it reverseGPIO(), which reverses the output level of the LED.

http://www.freenove.com/

Any concerns?  support@freenove.com

77 Chapter 2 Button & LED

█ www.freenove.com

7

8

9

10

11

def reverseGPIO():

 if led.value():

 led.value(0)

 else:

 led.value(1)

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 3 LED Bar 78 www.freenove.com █

Chapter 3 LED Bar

We have learned how to control a LED blinking, next we will learn how to control a number of LEDs.

Project 3.1 Flowing Light

In this project, we use a number of LEDs to make a flowing light.

Component List

ESP8266 x1

USB cable

Breadboard x1

Jumper wire M/M x10

LED bar graph x1

Resistor 220Ω x9

http://www.freenove.com/

Any concerns?  support@freenove.com

79 Chapter 3 LED Bar

█ www.freenove.com

Component knowledge

Let us learn about the basic features of these components to use and understand them better.

LED bar

A Bar Graph LED has 10 LEDs integrated into one compact component. The two rows of pins at its bottom

are paired to identify each LED like the single LED used earlier.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 3 LED Bar 80 www.freenove.com █

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

If LEDbar doesn’t work, try to rotate LEDbar for 180°. The label is random.

http://www.freenove.com/

Any concerns?  support@freenove.com

81 Chapter 3 LED Bar

█ www.freenove.com

Code

This project is designed to make a flowing water lamp. Which are these actions: First turn LED #1 ON, then

turn it OFF. Then turn LED #2 ON, and then turn it OFF... and repeat the same to all 10 LEDs until the last LED

is turns OFF. This process is repeated to achieve the “movements” of flowing water.

03.1_FlowingLight

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”，click “This computer”  “D:”  “Micropython_Codes”  “03.1_FlowingLight” and

double click “FlowingLight.py”.

click

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 3 LED Bar 82 www.freenove.com █

Click “Run current script” shown in the box above, LED Bar Graph will light up from left to right and then back

from right to left.

Press the "RST" button on the ESP8266 development board and exit the program. You can also click “Run

current script” again.

If you have any concerns, please contact us via: support@freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

import time

from machine import Pin

pins=[13,12,14,16,5,4,0,2,15]

def showled():

 length=len(pins)

 for i in range(0,length):

 led=Pin(pins[i],Pin.OUT)

 led.value(1)

 time.sleep_ms(100)

 led.value(0)

 for i in range(0,length):

 led=Pin(pins[(length-i-1)],Pin.OUT)

 led.value(1)

 time.sleep_ms(100)

 led.value(0)

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

83 Chapter 3 LED Bar

█ www.freenove.com

19

20

while True:

 showled()

Use an array to define 10 GPIO ports connected to LED Bar Graph for easier operation.

4 pins=[13,12,14,16,5,4,0,2,15]

Use len() function to obtain the amount of elements in the list and use a for loop to configure pins as output

mode.

7

8

9

 length=len(pins)

 for i in range(0,length):

 led=Pin(pins[i],Pin.OUT)

Use two for loops to turn on LEDs separately from left to right and then back from right to left.

8

9

10

11

12

13

14

15

16

17

 for i in range(0,length):

 led=Pin(pins[i],Pin.OUT)

 led.value(1)

 time.sleep_ms(100)

 led.value(0)

 for i in range(0,length):

 led=Pin(pins[(length-i-1)],Pin.OUT)

 led.value(1)

 time.sleep_ms(100)

 led.value(0)

Reference

for i in range(start,end,num: int=1)

For loop is used to execute a program endlessly and iterate in the order of items (a list or a string) in the

sequence

start: The initial value, the for loop starts with it

end: The ending value, the for loop end with it

num: Num is automatically added each time to the data. The default value is 1

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 4 Analog & PWM 84 www.freenove.com █

Chapter 4 Analog & PWM

In previous study, we have known that one button has two states: pressed and released, and LED has light-

on/off state, then how to enter a middle state? How to output an intermediate state to let LED "semi bright"?

That's what we're going to learn.

First, let’s learn how to control the brightness of a LED.

Project 4.1 Breathing LED

Breathing light, that is, LED is turned from off to on gradually, and gradually from on to off, just like "breathing".

So, how to control the brightness of a LED? We will use PWM to achieve this target.

Component List

ESP8266 x1

USB cable

Breadboard x1

LED x1

Resistor 220Ω x1

Jumper wire M/M x3

http://www.freenove.com/

Any concerns?  support@freenove.com

85 Chapter 4 Analog & PWM

█ www.freenove.com

Related knowledge

Analog & Digital

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete-

time signal is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A

familiar example of an Analog Signal would be how the temperature throughout the day is continuously

changing and could not suddenly change instantaneously from 0℃ to 10℃. However, Digital Signals can

instantaneously change in value. This change is expressed in numbers as 1 and 0 (the basis of binary code).

Their differences can more easily be seen when compared when graphed as below.

In practical application, we often use binary as the digital signal, that is a series of 0’s and 1’s. Since a binary

signal only has two values (0 or 1), it has great stability and reliability. Lastly, both analog and digital signals

can be converted into the other.

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits.

Common processors cannot directly output analog signals. PWM technology makes it very convenient to

achieve this conversion (translation of digital to analog signals)

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high

levels and low levels, which alternately last for a while. The total time for each set of high levels and low levels

is generally fixed, which is called the period (Note: the reciprocal of the period is frequency). The time of high

level outputs are generally called “pulse width”, and the duty cycle is the percentage of the ratio of pulse

duration, or pulse width (PW) to the total period (T) of the waveform.

The longer the output of high levels last, the longer the duty cycle and the higher the corresponding voltage

in the analog signal will be. The following figures show how the analog signal voltages vary between 0V-5V

(high level is 5V) corresponding to the pulse width 0%-100%:

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 4 Analog & PWM 86 www.freenove.com █

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this

relationship, we can use PWM to control the brightness of an LED or the speed of DC motor and so on.

It is evident from the above that PWM is not real analog, and the effective value of the voltage is equivalent

to the corresponding analog. so, we can control the output power of the LED and other output modules to

achieve different effects.

http://www.freenove.com/

Any concerns?  support@freenove.com

87 Chapter 4 Analog & PWM

█ www.freenove.com

ESP8266 and PWM

The ESP8266 PWM controller has 8 independent channels, each of which can independently control frequency,

duty cycle, and even accuracy. Unlike traditional PWM pins, the PWM output pins of ESP8266 are configurable

and they can be configured to PWM.

The ESP8266 supports PWM pins as follows:

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this

relationship, we can use PWM to control the brightness of an LED or the speed of DC motor and so on.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 4 Analog & PWM 88 www.freenove.com █

Circuit

This circuit is the same as the one in project Blink.

Schematic diagram

Hardware connection. If you need any support, please contact us via: support@freenove.com

Code

This project is designed to make PWM output GPIO4 with pulse width increasing from 0% to 100%, and then

reducing from 100% to 0% gradually.

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”，click“This computer”  “D:”  “Micropython_Codes”  “04.1_BreatheLight” and double

click “BreatheLight.py”.

http://www.freenove.com/

Any concerns?  support@freenove.com

89 Chapter 4 Analog & PWM

█ www.freenove.com

04.1_BreatheLight

Click “Run current script”, and you'll see that LED is turned from ON to OFF and then back from OFF to ON

gradually like breathing.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 4 Analog & PWM 90 www.freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

from machine import Pin,PWM

import time

pwm =PWM(Pin(4),1000)

try:

 while True:

 for i in range(0,1023):

 pwm.duty(i)

 time.sleep_ms(1)

 for i in range(0,1023):

 pwm.duty(1023-i)

 time.sleep_ms(1)

except:

 pwm.deinit()

The way that the ESP8266 PWM pins output is different from traditionally controllers. It can change frequency

and duty cycle by configuring PWM’s parameters at the initialization stage. Define GPIO4’s output frequency

as 1000Hz, and assign them to PWM.

4 pwm =PWM(Pin(4),1000)

The range of duty cycle is 0-1023, so we use the first for loop to control PWM to change the duty cycle value,

making PWM output 0% -100%; Use the second for loop to make PWM output 100%-0%.

7

8

9

10

11

12

13

 for i in range(0,1023):

 pwm.duty(i)

 time.sleep_ms(1)

 for i in range(0,1023):

 pwm.duty(1023-i)

 time.sleep_ms(1)

Each time PWM is used, the hardware Timer will be turned ON to cooperate it. Therefore, after each use of

PWM, deinit() needs to be called to turned OFF the timer. Otherwise, the PWM may fail to work next time.

15 pwm.deinit()

Note: PWM can be enabled on all pins except pin (16). All channels have a frequency that ranges from 1 to

1000 (measured in Hz). Duty cycle is between 0 and 1023 inclusive.

http://www.freenove.com/

Any concerns?  support@freenove.com

91 Chapter 4 Analog & PWM

█ www.freenove.com

Reference

Class PWM(pin, freq)

Before each use of PWM module, please add the statement “from machine import PWM” to the top of

the python file.

pin: PWM can be enabled on all pins except pin (16), such as Pin(0)、Pin(2)….

freq: Output frequency, with the range of 0-1000 Hz

duty: Duty cycle, with the range of 0-1023.

PWM.init(freq, duty): Initialize PWM, parameters are the same as above.

PWM.freq([freq_val]): When there is no parameter, the function obtains and returns PWM frequency;

When parameters are set, the function is used to set PWM frequency and returns nothing.

PWM.duty([duty_val]): When there is no parameter, the function obtains and returns PWM duty cycle;

When parameters are set, the function is used to set PWM duty cycle.

PWM.deinit(): Turn OFF PWM.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 4 Analog & PWM 92 www.freenove.com █

Project 4.2 Meteor Flowing Light

After learning about PWM, we can use it to control LED Bar Graph and realize a cooler Flowing Light.

Component List

ESP8266 x1

USB cable

Breadboard x1

Jumper wire M/M x9

LED bar graph x1

Resistor 220Ω x8

http://www.freenove.com/

Any concerns?  support@freenove.com

93 Chapter 4 Analog & PWM

█ www.freenove.com

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

If LEDbar doesn’t work, try to rotate LEDbar for 180°. The label is random.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 4 Analog & PWM 94 www.freenove.com █

Code

Flowing Light with tail was implemented with PWM.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “04.2_FlowingLight”. Select

“pwm.py”, right click to select “Upload to /”, wait for “pwm.py” to be uploaded to ESP8266 and then

double click “FlowingLight.py”

04.2_FlowingLight

Click “Run current script”, and LED Bar Graph will gradually light up and out from left to right, then light up

and out from right to left.

http://www.freenove.com/

Any concerns?  support@freenove.com

95 Chapter 4 Analog & PWM

█ www.freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

from machine import Pin,PWM

import time

pins=[13, 12, 14, 5, 4, 0, 2, 15]

dutys=[0,0,0,0,0,0,0,0,1023,512,256,128,64,32,16,8,0,0,0,0,0,0,0,0];

delayTimes=50

frequency = 1000

def showled():

 for i in range(0,16):

 for j in range(0,8):

 led = PWM(Pin(pins[j]),frequency)

 led.duty(dutys[i+j])

 time.sleep_ms(delayTimes)

 for i in range(0,16):

 for j in range(0,8):

 led = PWM(Pin(pins[7-j]),frequency)

 led.duty(dutys[i+j])

 time.sleep_ms(delayTimes)

while True:

 showled()

Import the object myPWM from pwm.py and set corresponding pins for PWM channel.

1

2

3

from machine import Pin,PWM

pins=[13, 12, 14, 5, 4, 0, 2, 15]

First we defined 8 GPIO, 8 PWM channels, and 24 pulse width values.

3

4

pins=[13, 12, 14, 5, 4, 0, 2, 15]

dutys=[0,0,0,0,0,0,0,0,1023,512,256,128,64,32,16,8,0,0,0,0,0,0,0,0];

Set the PWM pin[j] and duty cycle [I +j].

10

11

 led = PWM(Pin(pins[j]),frequency)

 led.duty(dutys[i+j])

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 4 Analog & PWM 96 www.freenove.com █

In the code, a nesting of two for loops are used to achieve this effect.

8

9

10

11

12

13

14

15

16

17

 for i in range(0,16):

 for j in range(0,8):

 led = PWM(Pin(pins[j]),frequency)

 led.duty(dutys[i+j])

 time.sleep_ms(delayTimes)

 for i in range(0,16):

 for j in range(0,8):

 led = PWM(Pin(pins[7-j]),frequency)

 led.duty(dutys[i+j])

 time.sleep_ms(delayTimes)

In the main function, a nested for loop is used to control the pulse width of the PWM. Every time i in the first

for loop increases by 1, the LED Bar Graph will move one grid, and gradually change according to the value

in the array dutys. As shown in the following table, the value in the second row is the value of the array dutys,

and the 8 green grids in each row below represent the 8 LEDs on the LED Bar Graph. Each time i increases by

1, the value of the LED Bar Graph will move to the right by one grid, and when it reaches the end, it will move

from the end to the starting point, achieving the desired effect.

0 1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

d

i

0 0 0 0 0 0 0 1

0

2

3

5

1

2

2

5

6

1

2

8

6

4

3

2

1

6

8 0 0 0 0 0 0 0 0

0

1

…

14

15

16

How to import a custom python module

Each Python file, as long as it's stored on the file system of ESP8266, is a module. To import a custom module,

the module file needs to be located in the MicroPython environment variable path or in the same path as the

currently running program.

First, customize a python module “custom.py”. Create a new py file and name it “custom.py”. Write code to

it and save it to ESP8266.

rand()

http://www.freenove.com/

Any concerns?  support@freenove.com

97 Chapter 4 Analog & PWM

█ www.freenove.com

Second, import custom module “custom” to main.py

Call function rand()

of custom module

Import custom module

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 5 RGBLED 98 www.freenove.com █

Chapter 5 RGBLED

In this chapter, we will learn how to control a RGBLED. It can emit different colors of light. Next, we will use

RGBLED to make a multicolored light.

Project 5.1 Random Color Light

In this project, we will make a multicolored LED. And we can control RGBLED to switch different colors

automatically.

Component List

ESP8266 x1

USB cable

Breadboard x1

RGBLED x1

Resistor 220Ω x3

Jumper wire M/M x5

http://www.freenove.com/

Any concerns?  support@freenove.com

99 Chapter 5 RGBLED

█ www.freenove.com

Related knowledge

RGB LED has integrated 3 LEDs that can respectively emit red, green and blue light. And it has 4 pins. The

long pin (1) is the common port, that is, 3 LED 's positive or negative port. The RGB LED with common positive

port and its symbol is shown below. We can make RGB LED emit various colors of light by controlling these 3

LEDs to emit light with different brightness,

Red, green, and blue light are known as three primary colors. When you combine these three primary-color

lights with different brightness, it can produce almost all kinds of visible lights. Computer screens, single pixel

of cell phone screen, neon, and etc. are working under this principle.

RGB

If we use three 10-bit PWM to control the RGBLED, in theory, we can create 2
10
*2

10
*2

10
= 1,073,741,824(1 billion)

colors through different combinations.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 5 RGBLED 100 www.freenove.com █

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/

Any concerns?  support@freenove.com

101 Chapter 5 RGBLED

█ www.freenove.com

Code

We need to create three PWM channels and use random duty cycle to make random RGBLED color.

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “05.1_RandomColorLight”and

double click “RandomColorLight.py”.

05.1_RandomColorLight

Click “Run current script”, RGBLED begins to display random colors.

If you have any concerns, please contact us via: support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

Chapter 5 RGBLED 102 www.freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

29

30

31

from machine import Pin,PWM

import random

import time

pins=[13, 12, 14]

freq_num = 1000

pwm0 = PWM(Pin(pins[0])) #set PWM

pwm1 = PWM(Pin(pins[1]))

pwm2 = PWM(Pin(pins[2]))

pwm0.freq(freq_num)

pwm1.freq(freq_num)

pwm2.freq(freq_num)

def setColor(r,g,b):

 pwm0.duty(1023-r)

 pwm1.duty(1023-g)

 pwm2.duty(1023-b)

try:

 while True:

 red =random.getrandbits(10)

 green =random.getrandbits(10)

 blue =random.getrandbits(10)

 setColor(red,green,blue)

 time.sleep_ms(200)

except:

 pwm0.deinit()

 pwm1.deinit()

 pwm2.deinit()

Import Pin, PWM and Randon Function modules.

1

2

3

from machine import Pin,PWM

import random

import time

Configure ouput mode of GPIO13, GPIO12 and GPIO14 as PWM output and PWM frequency as 1000Hz

5

6

8

9

10

11

12

13

pins=[13, 12, 14]

freq_num = 1000

pwm0 = PWM(Pin(pins[0])) #set PWM

pwm1 = PWM(Pin(pins[1]))

pwm2 = PWM(Pin(pins[2]))

pwm0.freq(freq_num)

pwm1.freq(freq_num)

pwm2.freq(freq_num)

http://www.freenove.com/

Any concerns?  support@freenove.com

103 Chapter 5 RGBLED

█ www.freenove.com

Define a function to set the color of RGBLED.

15

16

17

18

def setColor(r,g,b):

 pwm0.duty(1023-r)

 pwm1.duty(1023-g)

 pwm2.duty(1023-b)

Call random function getrandbits(size) to generates an integer with 10 random bits and assign the value to

red. size = 10, it generates an integer in the range of 0 to 0b1111111111

22 red =random.getrandbits(10)

Obtain 3 random number every 200 milliseconds and call function setColor to make RGBLED display dazzling

colors.

17

18

19

20

21

22

 while True:

 red =random.getrandbits(10)

 green =random.getrandbits(10)

 blue =random.getrandbits(10)

 setColor(red,green,blue)

 time.sleep_ms(200)

Reference

Class random

Before each use of the module random, please add the statement “import random” to the top of

Python file.

randint(start, end): Randomly generates an integer between the value of start and end.

start: Starting value in the specified range, which would be included in the range.

end: Ending value in the specified range, which would be included in the range.

random(): Randomly generates a floating point number between 0 and 1.

random.unifrom(start, end): Randomly generates a floating point number between the value of start and

end

start: Starting value in the specified range, which would be included in the range.

end: Ending value in the specified range, which would be included in the range.

random.getrandbits(size): Generates an integer with size random bits

For example:

size = 4, it generates an integer in the range of 0 to 0b1111

size = 8, it generates an integer in the range of 0 to 0b11111111

random.randrange(start, end, step): Randomly generates a positive integer in the range from start to end

and increment to step.

start: Starting value in the specified range, which would be included in the range

end: Ending value in the specified range, which would be included in the range.

step: An integer specifying the incrementation.

random.seed(sed): Specifies a random seed, usually being applied in conjunction with other random

number generators

sed: Random seed, a starting point in generating random numbers.

random.choice(obj): Randomly generates an element from the object obj.

obj: list of elements

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 5 RGBLED 104 www.freenove.com █

Project 5.2 Gradient Color Light

In the previous project, we have mastered the usage of RGBLED, but the random color display is rather stiff.

This project will realize a fashionable Light with soft color changes.

Component list, the circuit is exactly the same as the project random color light.

Using a color model, the color changes from 0 to 255 as shown below.

In this code, the color model will be implemented and RGBLED will change colors along the model.

Open “Thonny”, click“This computer”  “D:”  “Micropython_Codes”  “05.2_GradientColorLight” and

double click “GradientColorLight.py”.

05.2_GradientColorLight

The following is the program code:

1

2

3

4

5

6

7

8

9

10

from machine import Pin,PWM

import time

pins=[14,12,13];

pwm0=PWM(Pin(pins[0]),1000)

pwm1=PWM(Pin(pins[1]),1000)

pwm2=PWM(Pin(pins[2]),1000)

red=0 #red

http://www.freenove.com/

Any concerns?  support@freenove.com

105 Chapter 5 RGBLED

█ www.freenove.com

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

green=0 #green

blue=0 #blue

def setColor():

 pwm0.duty(red)

 pwm1.duty(green)

 pwm2.duty(blue)

def wheel(pos):

 global red,green,blue

 WheelPos=pos%1023

 print(WheelPos)

 if WheelPos<341:

 red=1023-WheelPos*3

 green=WheelPos*3

 blue=0

 elif WheelPos>=341 and WheelPos<682:

 WheelPos -= 341;

 red=0

 green=1023-WheelPos*3

 blue=WheelPos*3

 else :

 WheelPos -= 682;

 red=WheelPos*3

 green=0

 blue=1023-WheelPos*3

try:

 while True:

 for i in range(0,1023):

 wheel(i)

 setColor()

 time.sleep_ms(15)

except:

 pwm0.deinit()

 pwm1.deinit()

 pwm2.deinit()

The function wheel() is a color selection method of the color model introduced earlier. The value range of the

parameter pos is 0-1023. The function will return a data containing the duty cycle values of 3 pins.

19

20

21

22

def wheel(pos):

 global red,green,blue

 WheelPos=pos%1023

 print(WheelPos)

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 5 RGBLED 106 www.freenove.com █

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

 if WheelPos<341:

 red=1023-WheelPos*3

 green=WheelPos*3

 blue=0

 elif WheelPos>=341 and WheelPos<682:

 WheelPos -= 341;

 red=0

 green=1023-WheelPos*3

 blue=WheelPos*3

 else :

 WheelPos -= 682;

 red=WheelPos*3

 green=0

 blue=1023-WheelPos*3

http://www.freenove.com/

Any concerns?  support@freenove.com

107 Chapter 6 NeoPixel

█ www.freenove.com

Chapter 6 NeoPixel

This chapter will help you learn to use a more convenient RGBLED lamp, which requires only one GPIO

control and can be connected in infinite series in theory. Each LED can be controlled independently.

Project 6.1 NeoPixel

Learn the basic usage of NeoPixel and use it to flash red, green, blue and white.

Component List

ESP8266 x1

USB cable

Breadboard x1

Freenove 8 RGB LED Module x1

Jumper wire F/M x4

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 6 NeoPixel 108 www.freenove.com █

Related knowledge

Freenove 8 RGB LED Module

The Freenove 8 RGB LED Module is as below. You can use only one data pin to control eight LEDs on the

module. As shown below:

And you can also control many modules at the same time. Just connect OUT pin of one module to IN pin of

another module. In this way, you can use one data pin to control 8, 16, 32 … LEDs.

Pin description:

(IN) (OUT)

symbol Function symbol Function

S Input control signal S Output control signal

V Power supply pin, +3.5V~5.5V V Power supply pin, +3.5V~5.5V

G GND G GND

http://www.freenove.com/

Any concerns?  support@freenove.com

109 Chapter 6 NeoPixel

█ www.freenove.com

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 6 NeoPixel 110 www.freenove.com █

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “06.1_Neopixel” and double click

“Neopixel.py”.

06.1_Neopixel

Click “Run current script”, and Neopixel begins to light up in red, green, blue, white and black.

http://www.freenove.com/

Any concerns?  support@freenove.com

111 Chapter 6 NeoPixel

█ www.freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

from machine import Pin

import neopixel

import time

pin = Pin(2, Pin.OUT)

np = neopixel.NeoPixel(pin, 8)

#brightness :0-255

brightness=10

colors=[[brightness,0,0], #red

 [0,brightness,0], #green

 [0,0,brightness], #blue

 [brightness,brightness,brightness], #white

 [0,0,0]] #close

while True:

 for i in range(0,5):

 for j in range(0,8):

 np[j]=colors[i]

 np.write()

 time.sleep_ms(50)

 time.sleep_ms(500)

 time.sleep_ms(500)

Import Pin, neopiexl and time modules.

1

2

3

from machine import Pin

import neopixel

import time

Define the number of pin and LEDs connected to neopixel.

4

5

pin = Pin(2, Pin.OUT)

np = neopixel.NeoPixel(pin, 8)

Define the brightness of neopixel’s LED and an array to store color.

7

8

9

10

11

12

13

#brightness :0-255

brightness=10

colors=[[brightness,0,0], #red

 [0,brightness,0], #green

 [0,0,brightness], #blue

 [brightness,brightness,brightness], #white

 [0,0,0]] #close

Assign the color data to the array np and call function write() to send np array data to neopixel module.

18

19

 np[j]=colors[i]

 np.write()

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 6 NeoPixel 112 www.freenove.com █

Nest two for loops to make the module repeatedly display five states of red, green, blue, white and OFF.

15

16

17

18

19

20

21

22

while True:

 for i in range(0,5):

 for j in range(0,8):

 np[j]=colors[i]

 np.write()

 time.sleep_ms(50)

 time.sleep_ms(500)

 time.sleep_ms(500)

Reference

Class neopixel

Before each usr of neopixel module, please add the statement “import neopixel” to the top of Python

file.

NeoPixel(pin, n): Define the number of output pins and LEDs of neopixel module

pin: Output pins

n: The number of LEDs.

NeoPixel.write(): Write data to LEDs.

http://www.freenove.com/

Any concerns?  support@freenove.com

113 Chapter 6 NeoPixel

█ www.freenove.com

Project 6.2 Rainbow Light

In the previous project, we have mastered the usage of NeoPixel. This project will realize a slightly complicated

Rainbow Light. The component list and the circuit are exactly the same as the project fashionable Light.

Code

Continue to use the following color model to equalize the color distribution of the 8 leds and gradually change.

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “06.2_Rainbow_light” and then

double click “Rainbow_light.py”.

06.2_Rainbow_light

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 6 NeoPixel 114 www.freenove.com █

Click “Run current script”, and the Freenove 8 RGB LED Strip displays different colors and the color changes

gradually.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

from machine import Pin

import neopixel

import time

pin = Pin(2, Pin.OUT)

np = neopixel.NeoPixel(pin, 8)

brightness=0.1 #brightness: 0 - 1.0

red=0 #red

green=0 #green

blue=0 #blue

def wheel(pos):

 global red,green,blue

 WheelPos=pos%255

 if WheelPos<85:

 red=(255-WheelPos*3)

 green=(WheelPos*3)

 blue=0

 elif WheelPos>=85 and WheelPos<170:

 WheelPos -= 85;

 red=0

 green=(255-WheelPos*3)

 blue=(WheelPos*3)

 else :

 WheelPos -= 170;

 red=(WheelPos*3)

 green=0

 blue=(255-WheelPos*3)

while True:

http://www.freenove.com/

Any concerns?  support@freenove.com

115 Chapter 6 NeoPixel

█ www.freenove.com

31

32

33

34

35

36

 for i in range(0,255):

 for j in range(0,8):

 wheel(i+j*255//8)

 np[j]=(int(red*brightness),int(green*brightness),int(blue*brightness))

 np.write()

 time.sleep_ms(5)

Define a wheel() function to process the color data of neopixel module.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

def wheel(pos):

 global red,green,blue

 WheelPos=pos%255

 if WheelPos<85:

 red=(255-WheelPos*3)

 green=(WheelPos*3)

 blue=0

 elif WheelPos>=85 and WheelPos<170:

 WheelPos -= 85;

 red=0

 green=(255-WheelPos*3)

 blue=(WheelPos*3)

 else :

 WheelPos -= 170;

 red=(WheelPos*3)

 green=0

 blue=(255-WheelPos*3)

Set the color brightness of the module.

7 brightness=0.1 #brightness: 0 - 1.0

Use a nesting of two for loops. The first for loop makes the value of i increase from 0 to 255 automatically

and the wheel() function processes the value of i into data of the module’s three colors; the second for loop

writes the color data to the module.

31

32

33

34

35

36

 for i in range(0,255):

 for j in range(0,8):

 wheel(i+j*255//8)

 np[j]=(int(red*brightness),int(green*brightness),int(blue*brightness))

 np.write()

 time.sleep_ms(5)

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 7 Buzzer 116 www.freenove.com █

Chapter 7 Buzzer

In this chapter, we will learn about buzzers and the sounds they make.

Project 7.1 Doorbell

We will make this kind of doorbell: when the button is pressed, the buzzer sounds; and when the button is

released, the buzzer stops sounding.

Component List

ESP8266 x1

USB cable

Breadboard x1

Jumper wire M/M x9

NPN transistorx1

(S8050)

Active buzzer x1

Push button x1

Resistor 1kΩ x1

Resistor 10kΩ x2

http://www.freenove.com/

Any concerns?  support@freenove.com

117 Chapter 7 Buzzer

█ www.freenove.com

Component knowledge

Buzzer

Buzzer is a sounding component, which is widely used in electronic devices such as calculator, electronic

warning clock and alarm. Buzzer has two types: active and passive. Active buzzer has oscillator inside, which

will sound as long as it is supplied with power. Passive buzzer requires external oscillator signal (generally use

PWM with different frequency) to make a sound.

Active buzzer Passive buzzer

Active buzzer is easy to use. Generally, it can only make a specific frequency of sound. Passive buzzer

requires an external circuit to make a sound, but it can be controlled to make a sound with different

frequency. The resonant frequency of the passive buzzer is 2kHz, which means the passive buzzer is loudest

when its resonant frequency is 2kHz.

Next, we will use an active buzzer to make a doorbell and a passive buzzer to make an alarm.

How to identify active and passive buzzer?

1. Usually, there is a label on the surface of active buzzer covering the vocal hole, but this is not an absolute

judgment method.

2. Active buzzers are more complex than passive buzzers in their manufacture. There are many circuits and

crystal oscillator elements inside active buzzers; all of this is usually protected with a waterproof coating

(and a housing) exposing only its pins from the underside. On the other hand, passive buzzers do not

have protective coatings on their underside. From the pin holes viewing of a passive buzzer, you can see

the circuit board, coils, and a permanent magnet (all or any combination of these components depending

on the model.

Active buzzer Passive buzzer

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 7 Buzzer 118 www.freenove.com █

Transistor

Because the buzzer requires such large current that GPIO of ESP8266 output capability cannot meet the

requirement, a transistor of NPN type is needed here to amplify the current.

Transistor, the full name: semiconductor transistor, is a semiconductor device that controls current. Transistor

can be used to amplify weak signal, or works as a switch. It has three electrodes(PINs): base (b), collector (c)

and emitter (e). When there is current passing between "be", "ce" will allow several-fold current (transistor

magnification) pass, at this point, transistor works in the amplifying area. When current between "be" exceeds

a certain value, "ce" will not allow current to increase any longer, at this point, transistor works in the saturation

area. Transistor has two types as shown below: PNP and NPN,

PNP transistor NPN transistor

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

Based on the transistor's characteristics, it is often used as a switch in digital circuits. As micro-controller's

capacity to output current is very weak, we will use transistor to amplify current and drive large-current

components.

When using NPN transistor to drive buzzer, we often adopt the following method. If GPIO outputs high level,

current will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs low

level, no current flows through R1, the transistor will not be conducted, and buzzer will not sound.

When using PNP transistor to drive buzzer, we often adopt the following method. If GPIO outputs low level,

current will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs high

level, no current flows through R1, the transistor will not be conducted, and buzzer will not sound.

NPN transistor to drive buzzer

PNP transistor to drive buzzer

http://www.freenove.com/

Any concerns?  support@freenove.com

119 Chapter 7 Buzzer

█ www.freenove.com

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Note: in this circuit, the power supply for buzzer is 5V, and pull-up resistor of the button connected to the

power 3.3V. The buzzer can work when connected to power 3.3V, but it will reduce the loudness.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 7 Buzzer 120 www.freenove.com █

Code

In this project, a buzzer will be controlled by a push button switch. When the button switch is pressed, the

buzzer sounds and when the button is released, the buzzer stops. It is analogous to our earlier project that

controlled an LED ON and OFF.

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “07.1_Doorbell” and double click

“Doorbell.py”.

07.1_Doorbell

http://www.freenove.com/

Any concerns?  support@freenove.com

121 Chapter 7 Buzzer

█ www.freenove.com

Click “Run current script”, press the push button switch and the buzzer will sound. Release the push button

switch and the buzzer will stop.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

from machine import Pin

button=Pin(4,Pin.IN,Pin.PULL_UP)

activeBuzzer=Pin(5,Pin.OUT)

activeBuzzer.value(0)

while True:

 if not button.value():

 activeBuzzer.value(1)

 else:

 activeBuzzer.value(0)

The code is logically the same as using button to control LED.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 7 Buzzer 122 www.freenove.com █

Project 7.2 Alertor

Next, we will use a passive buzzer to make an alarm.

Component list and the circuit part is similar to last section. In the Doorbell circuit only the active buzzer

needs to be replaced with a passive buzzer.

Code

In this project, the buzzer alarm is controlled by the button. Press the button, then buzzer sounds. If you

release the button, the buzzer will stop sounding. In the logic, it is the same as using button to control LED.

In the control method, passive buzzer requires PWM of certain frequency to sound.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “07.2_Alertor”，and double click

“Alertor.py”.

07.2_Alertor

Click “Run current script”, press the button, then alarm sounds. And when the button is release, the alarm will

stop sounding.

http://www.freenove.com/

Any concerns?  support@freenove.com

123 Chapter 7 Buzzer

█ www.freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

from machine import Pin,PWM

import math

import time

PI=3.14

button=Pin(4,Pin.IN,Pin.PULL_UP)

passiveBuzzer=PWM(Pin(5),1000)

def alert():

 for x in range(0,36):

 sinVal=math.sin(x*10*PI/180)

 toneVal=500+int(sinVal*500)

 passiveBuzzer.duty(1000)

 passiveBuzzer.freq(toneVal)

 time.sleep_ms(10)

try:

 while True:

 if not button.value():

 passiveBuzzer.init()

 alert()

 else:

 passiveBuzzer.duty(0)

 passiveBuzzer.deinit()

except:

 passiveBuzzer.deinit()

Import PWM, Pin, math and time modules.

1

2

3

from machine import Pin,PWM

import math

import time

Define the pins of the button and passive buzzer.

5

6

7

PI=3.14

button=Pin(4,Pin.IN,Pin.PULL_UP)

passiveBuzzer=PWM(Pin(5),1000)

Call sin function of math module to generate the frequency data of the passive buzzer.

9

10

11

12

13

14

15

def alert():

 for x in range(0,36):

 sinVal=math.sin(x*10*PI/180)

 toneVal=500+int(sinVal*500)

 passiveBuzzer.duty(1000)

 passiveBuzzer.freq(toneVal)

 time.sleep_ms(10)

When not using PWM, please turn it OFF in time.

22 passiveBuzzer.duty(0)

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 7 Buzzer 124 www.freenove.com █

23 passiveBuzzer.deinit()

http://www.freenove.com/

Any concerns?  support@freenove.com

125 Chapter 8 Serial Communication

█ www.freenove.com

Chapter 8 Serial Communication

Serial Communication is a means of Communication between different devices/devices. This section describes

ESP8266's Serial Communication.

Project 8.1 Serial Print

This project uses ESP8266's serial communicator to send data to the computer and print it on the serial

monitor.

Component List

ESP8266 x1

USB cable

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 8 Serial Communication 126 www.freenove.com █

Related knowledge

Serial communication

Serial communication generally refers to the Universal Asynchronous Receiver/Transmitter (UART), which is

commonly used in electronic circuit communication. It has two communication lines, one is responsible for

sending data (TX line) and the other for receiving data (RX line). The serial communication connections two

devices use is as follows:

Device 1 Device 2

Before serial communication starts, the baud rate of both sides must be the same. Communication between

devices can work only if the same baud rate is used. The baud rates commonly used is 9600 and 115200.

Serial port on ESP8266

Freenove ESP8266 has integrated USB to serial transfer, so it could communicate with computer connecting

to USB cable.

 ESP8266 USB to Serial Computer

Circuit

Connect Freenove ESP8266 to the computer with USB cable.

RX

TX

RX

TX

UART
UART

USB
COM

http://www.freenove.com/

Any concerns?  support@freenove.com

127 Chapter 8 Serial Communication

█ www.freenove.com

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “08.1_Serial_Print” and double

“Serial_Print.py”.

08.1_Serial_Print

Click “Run current script” and observe the changes of “Shell”, which will display the time when ESP8266 is

powered on once per second.

The following is the program code:

1

2

3

4

5

6

7

import time

print("ESP8266 initialization completed!")

while True:

 print("Running time : ", time.ticks_ms()/1000, "s")

 time.sleep(1)

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 8 Serial Communication 128 www.freenove.com █

Reference

Class UART

Before each use of UART module, please add the statement “from machine import UART” to the top of

python file.

UART(id, baudrate, bits, parity, rx, tx, stop, timeout): Define serial ports and configure parameters for

them.

id: Serial Number. The available serial port number is 1 or 2

baudrate: Baud rate

bits: The number of each character.

parity: Check even or odd, with 0 for even checking and 1 for odd checking.

rx, tx: UAPT’s reading and writing pins

Pin(0)、Pin(2)、Pin(4)、Pin(5)、Pin(9)、Pin(10)、Pin(12~19)、Pin(21~23)、Pin(25)、Pin(26)、

Pin(34~36)、Pin(39)

Note: Pin(1) and Pin(3) are occupied and not recommend to be used as tx,rx.

stop: The number of stop bits, and the stop bit is 1 or 2.

timeout: timeout period (Unit: millisecond)

0 < timeout ≤ 0x7FFF FFFF (decimal: 0 < timeout ≤ 2147483647)

UART.init(baudrate, bits, parity, stop, tx, rx, rts, cts)): Initialize serial ports

tx: writing pins of uart

rx: reading pins of uart

rts: rts pins of uart

cts: cts pins of uart

UART.read(nbytes): Read nbytes bytes

UART.read(): Read data

UART.write(buf): Write byte buffer to UART bus

UART.readline(): Read a line of data, ending with a newline character.

UART.readinto(buf): Read and write data into buffer.

UART.readinto(buf, nbytes): Read and write data into buffer.

UART.any(): Determine whether there is data in serial ports. If yes, return the number of bytes; Otherwise,

return 0.

http://www.freenove.com/

Any concerns?  support@freenove.com

129 Chapter 8 Serial Communication

█ www.freenove.com

Project 8.2 Serial Read and Write

From last section, we use Serial port on Freenove ESP8266 to send data to a computer, now we will use that

to receive data from computer.

Component and Circuit are the same as in the previous project.

Code

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “08.2_Serial_Read_and_Write” and

double click “Serial_Read_and_Write.py”.

08.2_Serial_Read_and_Write

Click “Run current script” and ESP8266 will print out data at “Shell” and wait for users to enter any messages.

Press Enter to end the input, and “Shell” will print out data that the user entered. If you want to use other

serial ports, you can use other python files in the same directory.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 8 Serial Communication 130 www.freenove.com █

The following is the program code:

1

2

3

4

5

print(str("\nESP8266 initialization completed!\n")

 + str("Please input some characters,\n")

 + str("select \"Newline\" below and click send button. \n"))

while True:

 print("inputString: ",input())

http://www.freenove.com/

Any concerns?  support@freenove.com

131 Chapter 9 ADC Converter

█ www.freenove.com

Chapter 9 ADC Converter

We have learned how to control the brightness of LED through PWM and understood that PWM is not the

real analog before. In this chapter, we will learn how to read analog, convert it into digital. That is, ADC.

Project 9.1 Read the Voltage of Potentiometer

In this project, ADC is used to convert analog signals into digital signals. Control chip on the control board

has integrated this function. Now let us try to use this function to convert analog signals into digital signals.

Component List

ESP8266 x1

USB cable

Breadboard x1

Rotary potentiometer x1

Jumper wire M/M x3

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 9 ADC Converter 132 www.freenove.com █

Related knowledge

ADC

An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or binary

form consisting of 1s and 0s. The range of our ADC on ESP8266 is 10 bits, that means the resolution is

2^10=1024, and it represents a range (at 3.3V) will be divided equally to 1024 parts. The rage of analog values

corresponds to ADC values. So the more bits the ADC has, the denser the partition of analog will be and the

greater the precision of the resulting conversion.

Subsection 1: the analog in rang of 0V---3.3/1023 V corresponds to digital 0;

Subsection 2: the analog in rang of 3.3/1023 V---2*3.3 /1023V corresponds to digital 1;

…

The following analog will be divided accordingly.

The conversion formula is as follows:

𝐴𝐷𝐶 𝑉𝑎𝑙𝑢𝑒 =
Analog Voltage

3.3
∗ 1023

ADC on ESP8266

ESP8266 has one digital analog converters with successive approximations of 10-bit accuracy, and a total of

1 pins can be used to measure analog signals. GPIO analog pin definition are shown in the following table.

Note that the input voltage on the ADC pins of the ESP8266 module must be between 0V and 1.0V. For

the ESP8266 development board designed by us, its input voltage range has been sampled by resistors.

The ADC input voltage of the development board is 0V to 3.3V. Do not exceed this voltage range when

you use the ADC function.Exceeding this voltage range can cause permanent damage to your hardware!

Pin number in ESP8266

A0

The analog pin number is also defined in ESP8266's code base. For example, you can use A0 in your code.

http://www.freenove.com/

Any concerns?  support@freenove.com

133 Chapter 9 ADC Converter

█ www.freenove.com

Component knowledge

Potentiometer

Potentiometer is a resistive element with three Terminal parts. Unlike the resistors that we have used thus far

in our project which have a fixed resistance value, the resistance value of a potentiometer can be adjusted. A

potentiometer is often made up by a resistive substance (a wire or carbon element) and movable contact

brush. When the brush moves along the resistor element, there will be a change in the resistance of the

potentiometer’s output side (3) (or change in the voltage of the circuit that is is a part). The illustration below

represents a linear sliding potentiometer and its electronic symbol on the right.

What between potentiometer pin 1 and pin 2 is the resistor body, and pins 3 is connected to brush. When

brush moves from pin 1 to pin 2, the resistance between pin 1 and pin 3 will increase up to body resistance

linearly, and the resistance between pin 2 and pin 3 will decrease down to 0 linearly.

In the circuit. The both sides of resistance body are often connected to the positive and negative electrode of

the power. When you slide the brush pin 3, you can get a certain voltage in the range of the power supply.

Rotary potentiometer

Rotary potentiometers and linear potentiometers have the same function; the only difference being the

physical action being a rotational rather than a sliding movement.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 9 ADC Converter 134 www.freenove.com █

Circuit

Please note that the voltage range of the ADC is 0V to 3.3V.Exceeding this voltage range may cause

permanent damage to your hardware!

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

135 Chapter 9 ADC Converter

█ www.freenove.com

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “09.1_AnalogRead and then click

“AnalogRead.py”.

09.1_AnalogRead

Click “Run current script” and observe the message printed in “Shell”.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 9 ADC Converter 136 www.freenove.com █

"Shell" prints ADC value and the output voltage of potentiometer and other information. From the code, we

get the ADC value of pin A0, then convert it into voltage value.

Turn the rotary potentiometer shaft, and you can see the voltage change.

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

from machine import ADC, Pin

import time

adc = ADC(0)

try:

 while True:

 adcValue = adc.read()

 voltage = adcValue / 1024.0 * 3.3

 print("ADC Value:", adcValue, "Voltage:", voltage, "V")

 time.sleep(0.1)

except:

 pass

Import Pin, ADC and DAC modules.

1

2

from machine import ADC,Pin,DAC

import time

Read ADC value once every 100 millisecods, and "Shell" prints ADC value and the output voltage of

potentiometer and other information.

7

8

9

10

 adcValue = adc.read()

 voltage = adcValue / 1024.0 * 3.3

 print("ADC Value:", adcValue, "Voltage:", voltage, "V")

 time.sleep(0.1)

Reference

Class ADC

Before each use of ACD module, please add the statement “from machine import ADC” to the top of the

python file.

machine.ADC(pin): Create an ADC object associated with the given pin.

pin: Available pins are: ADC0.

ADC.read(): Read ADC and return the value.

http://www.freenove.com/

Any concerns?  support@freenove.com

137 Chapter 10 Potentiometer & LED

█ www.freenove.com

Chapter 10 Potentiometer & LED

In the previous section, we have finished reading ADC value and converting it into voltage. Now, we will try

to use potentiometer to control the brightness of LED.

Project 10.1 Soft Light

In this project, we will make a soft light. We will use an ADC Module to read ADC values of a potentiometer

and map it to duty cycle of the PWM used to control the brightness of a LED. Then you can change the

brightness of a LED by adjusting the potentiometer.

Component List

ESP8266 x1

USB cable

Breadboard x1

Rotary potentiometer x1

Resistor 220Ω x1

LED x1

Jumper wire M/M x8

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 10 Potentiometer & LED 138 www.freenove.com █

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

139 Chapter 10 Potentiometer & LED

█ www.freenove.com

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “10.1_Soft_LED” and double click

“Soft_LED.py”.

10.1_Soft_LED

Click “ Run current script”.Rotate the handle of potentiometer and the brightness of LED will change

correspondingly.

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

from machine import ADC, Pin, PWM

import time

adc = ADC(0)

pwm = PWM(Pin(4))

pwm.freq(1000)

try:

 while True:

 adcValue = adc.read()

 pwm.duty(adcValue)

 time.sleep(0.1)

except:

 pwm.deinit()

In the code, read the ADC value of potentiometer and map it to the duty cycle of PWM to control LED

brightness.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 10 Potentiometer & LED 140 www.freenove.com █

Project 10.2 Color Light

In this project, a potentiometer is used to control the RGB LED. The RGB LED is bright red when the

potentiometer is near the midpoint, green when the potentiometer rotates to the "left" and blue when the

potentiometer rotates to the "right".

Component List

ESP8266 x1

USB cable

Breadboard x1

Rotary potentiometer x1

Resistor 220Ω x3

RGBLED x1

Jumper wire M/M x9

http://www.freenove.com/

Any concerns?  support@freenove.com

141 Chapter 10 Potentiometer & LED

█ www.freenove.com

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 10 Potentiometer & LED 142 www.freenove.com █

Code

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “10.2_Color_Light” and double click

“Color_Light.py”.

10.2_Color_Light

Download the code to ESP8266, rotate the potentiometers, then the color of RGB LED will change.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

from machine import Pin,PWM,ADC

import time

pwm0=PWM(Pin(13,Pin.OUT),1000)

pwm1=PWM(Pin(14,Pin.OUT),1000)

pwm2=PWM(Pin(12,Pin.OUT),1000)

adc0=ADC(0)

def setColor(r, g, b):

 pwm0.duty(r)

 pwm1.duty(g)

 pwm2.duty(b)

 time.sleep_ms(100)

try:

http://www.freenove.com/

Any concerns?  support@freenove.com

143 Chapter 10 Potentiometer & LED

█ www.freenove.com

14

15

16

17

18

19

20

21

22

23

24

25

 while True:

 adcValue=adc0.read()

 if(adcValue>=0) and (adcValue<=345):

 setColor(1023, 0, 1023)

 elif (adcValue>345) and (adcValue<680):

 setColor(0, 1023, 1023)

 elif(adcValue>=680) and (adcValue<=1024):

 setColor(1023, 1023, 0)

except:

 pwm0.deinit()

 pwm1.deinit()

 pwm2.deinit()

In the code, you can read the potentiometer ADC value, judge the range of ADC value, to control the RGB

LED color.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 10 Potentiometer & LED 144 www.freenove.com █

Project 10.3 Soft Rainbow Light

In this project, we use a potentiometer to control Freenove 8 RGBLED Module.

Component List

ESP8266 x1

USB cable

Breadboard x1

Freenove 8 RGB LED Module x1

Rotary potentiometer x1

Jumper wire F/M x3

Jumper wire M/M x7

http://www.freenove.com/

Any concerns?  support@freenove.com

145 Chapter 10 Potentiometer & LED

█ www.freenove.com

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 10 Potentiometer & LED 146 www.freenove.com █

Code

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “10.3_Soft_Rainbow_Light” and

double click “Soft_Rainbow_Light.py”.

10.3_Soft_Rainbow_Light

Click “Run current script”. Rotate the handle of potentiometer and the color of the lights will change.

If you have any concerns, please contact us via: support@freenove.com

http://www.freenove.com/

Any concerns?  support@freenove.com

147 Chapter 10 Potentiometer & LED

█ www.freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

from machine import Pin,ADC

import neopixel

import time

np = neopixel.NeoPixel(Pin(2, Pin.OUT), 8)

brightness=0.1 #brightbess

red=0 #red

green=0 #green

blue=0 #blue

adc0=ADC(0)

def wheel(pos):

 global red,green,blue

 WheelPos=pos%255

 if WheelPos<85:

 red=(255-WheelPos*3)

 green=(WheelPos*3)

 blue=0

 elif WheelPos>=85 and WheelPos<170:

 WheelPos -= 85;

 red=0

 green=(255-WheelPos*3)

 blue=(WheelPos*3)

 else :

 WheelPos -= 170;

 red=(WheelPos*3)

 green=0

 blue=(255-WheelPos*3)

while True:

 adcValue = adc.read()

 for j in range(0,8):

 wheel(adcValue/4+j*255//8)

 np[j]=(int(red*brightness),int(green*brightness),int(blue*brightness))

 np.write()

 time.sleep_ms(10)

The logic of the code is basically the same as the previous project Rainbow Light. The difference is that in

this code, the starting point of the color is controlled by the potentiometer.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 11 Photoresistor & LED 148 www.freenove.com █

Chapter 11 Photoresistor & LED

In this chapter, we will learn how to use photoresistor.

Project 11.1 NightLamp

A Photoresistor is very sensitive to the amount of light present. We can take advantage of the characteristic

to make a nightlight with the following function: when the ambient light is less (darker environment) the LED

will automatically become brighter to compensate and when the ambient light is greater (brighter

environment) the LED will automatically dim to compensate.

Component List

ESP8266 x1

USB cable

Breadboard x1

Photoresistor x1

Resistor LED x1

Jumper wire M/M x7

220Ω x1

10KΩ x1

http://www.freenove.com/

Any concerns?  support@freenove.com

149 Chapter 11 Photoresistor & LED

█ www.freenove.com

Component knowledge

Photoresistor

Photoresistor is simply a light sensitive resistor. It is an active component that decreases resistance with respect

to receiving luminosity (light) on the component's light sensitive surface. Photoresistor’s resistance value will

change in proportion to the ambient light detected. With this characteristic, we can use a Photoresistor to

detect light intensity. The Photoresistor and its electronic symbol are as follows.

The circuit below is used to detect the change of a Photoresistor’s resistance value:

In the above circuit, when a Photoresistor’s resistance vale changes due to a change in light intensity, the

voltage between the Photoresistor and Resistor R1 will also change. Therefore, the intensity of the light can

be obtained by measuring this voltage.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 11 Photoresistor & LED 150 www.freenove.com █

Circuit

The circuit of this project is similar to SoftLight. The only difference is that the input signal is changed from a

potentiometer to a combination of a photoresistor and a resistor.

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/

Any concerns?  support@freenove.com

151 Chapter 11 Photoresistor & LED

█ www.freenove.com

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Codes of this project is logically the same as the project Soft Light.

11.1_Nightlamp

Click “Run current script”. Cover the photoresistor with your hands or illuminate it with lights, the brightness

of LEDs will change.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

from machine import Pin,PWM,ADC

import time

pwm =PWM(Pin(5,Pin.OUT),1000)

adc=ADC(0)

try:

 while True:

 adcValue=adc.read()

 pwm.duty(adcValue)

 print(adc.read())

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 11 Photoresistor & LED 152 www.freenove.com █

11

12

13

 time.sleep_ms(100)

except:

 pwm.deinit()

http://www.freenove.com/

Any concerns?  support@freenove.com

153 Chapter 12 Thermistor

█ www.freenove.com

Chapter 12 Thermistor

In this chapter, we will learn about Thermistors which are another kind of Resistor

Project 12.1 Thermometer

A Thermistor is a type of Resistor whose resistance value is dependent on temperature and changes in

temperature. Therefore, we can take advantage of this characteristic to make a Thermometer.

Component List

ESP8266 x1

USB cable

Breadboard x1

Thermistor x1

Resistor 1kΩ x1

Jumper wire M/M x4

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 12 Thermistor 154 www.freenove.com █

Component knowledge

Thermistor

A Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance of the

Thermistor will change. We can take advantage of this characteristic by using a Thermistor to detect

temperature intensity. A Thermistor and its electronic symbol are shown below.

The relationship between resistance value and temperature of a thermistor is:

Rt = R ∗ EXP[B ∗ (
1

T2
−

1

T1
)]

Where:

Rt is the thermistor resistance under T2 temperature;

R is the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of e;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature.

For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25.

The circuit connection method of the Thermistor is similar to photoresistor, as the following:

We can use the value measured by the ADC converter to obtain the resistance value of Thermistor, and then

we can use the formula to obtain the temperature value.

Therefore, the temperature formula can be derived as:

T2 = 1/(
1

T1
+ ln (

𝑅𝑡

R
)/𝐵)

http://www.freenove.com/

Any concerns?  support@freenove.com

155 Chapter 12 Thermistor

█ www.freenove.com

Circuit

The circuit of this project is similar to the one in the previous chapter. The only difference is that the

Photoresistor is replaced by a Thermistor.

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 12 Thermistor 156 www.freenove.com █

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “12.1_Thermometer” and double

click “Thermometer.py”.

12.1_Thermometer

Click “Run current script” and “Shell” will constantly display the current ADC value, voltage value and

temperature value. Try to “pinch” the thermistor (without touching the leads) with your index finger and thumb

for a brief time, you should see that the temperature value increases.

If you have any concerns, please contact us via: support@freenove.com

pinching the

thermistor

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

157 Chapter 12 Thermistor

█ www.freenove.com

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

from machine import Pin,ADC

import time

import math

adc=ADC(0)

try:

 while True:

 adcValue=adc.read()

 voltage=adcValue/1023*3.3

 Rt=10*voltage/(3.3-voltage)

 tempK=(1/(1/(273.15+25)+(math.log(Rt/10))/3950))

 tempC=tempK-273.15

 print("ADC value:",adcValue,"\tVoltage :",voltage,"\tTemperature :",tempC);

 time.sleep_ms(1000)

except:

 pass

In the code, the ADC value of ADC module A0 port is read, and then it calculates the voltage and the

resistance of Thermistor according to Ohms Law. Finally, it calculates the temperature sensed by the

Thermistor, according to the formula.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 13 74HC595 & LED Bar Graph 158 www.freenove.com █

Chapter 13 74HC595 & LED Bar Graph

We have used LED Bar Graph to make a flowing water light, in which 10 GPIO ports of ESP8266 is occupied.

More GPIO ports mean that more peripherals can be connected to ESP8266, so GPIO resource is very precious.

Can we make flowing water light with less GPIO? In this chapter, we will learn a component, 74HC595, which

can achieve the target.

Project 13.1 Flowing Water Light

Now let’s learn how to use the 74HC595 IC Chip to make a flowing water light using less GPIO.

Component List

ESP8266 x1

USB cable

Breadboard x1

74HC595 x1

LED Bar Graph x1

Resistor 220Ω x8

Jumper wire M/M x17

http://www.freenove.com/

Any concerns?  support@freenove.com

159 Chapter 13 74HC595 & LED Bar Graph

█ www.freenove.com

Related knowledge

74HC595

A 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert the serial data

of one byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With this

characteristic, the 74HC595 chip can be used to expand the IO ports of an ESP8266. At least 3 ports are

required to control the 8 ports of the 74HC595 chip.

The ports of the 74HC595 chip are described as follows:

Pin name GPIO

number

Description

Q0-Q7 15, 1-7 Parallel data output

VCC 16 The positive electrode of power supply, the voltage is 2~6V

GND 8 The negative electrode of power supply

DS 14 Serial data Input

OE 13 Enable output,

When this pin is in high level, Q0-Q7 is in high resistance state

When this pin is in low level, Q0-Q7 is in output mode

ST_CP 12 Parallel Update Output: when its electrical level is rising, it will update the

parallel data output.

SH_CP 11 Serial shift clock: when its electrical level is rising, serial data input register will

do a shift.

MR 10 Remove shift register: When this pin is in low level, the content in shift register

will be cleared.

Q7' 9 Serial data output: it can be connected to more 74HC595 in series.

For more detail, please refer to the datasheet on the 74HC595 chip.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 13 74HC595 & LED Bar Graph 160 www.freenove.com █

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/

Any concerns?  support@freenove.com

161 Chapter 13 74HC595 & LED Bar Graph

█ www.freenove.com

Code

In this project, we will make a flowing water light with a 74HC595 chip to learn about its functions.

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “13.1_Flowing_Water_Light”.

Select “my74HC595.py”, right click your mouse to select “Upload to /”, wait for “my74HC595.py”to be

uploaded to ESP8266 and then double click “Flowing_Water_Light.py”.

13.1_Flowing_Water_Light

Click“Run current script” and you will see that Bar Graph LED starts with the flowing water pattern flashing

from left to right and then back from right to left. If it displays nothing, maybe the LED Bar is connected upside

down, please unplug it and then re-plug it reversely.
If you have any concerns, please contact us via: support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

Chapter 13 74HC595 & LED Bar Graph 162 www.freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

import time

from my74HC595 import Chip74HC595

chip = Chip74HC595(14,12,13)

ESP8266-14: 74HC595-DS(14)

ESP8266-12: 74HC595-STCP(12)

ESP8266-13: 74HC595-SHCP(11)

while True:

 x=0x01

 for count in range(8):

 chip.shiftOut(1,x) #High bit is sent first

 x=x<<1

 time.sleep_ms(100)

 x=0x01

 for count in range(8):

 chip.shiftOut(0,x) #Low bit is sent first

 x=x<<1

 time.sleep_ms(100)

Import time and my74HC595 modules.

1

2

import time

from my74HC595 import Chip74HC595

Assign pins for ESP8266 to connect to 74HC595.

4 chip = Chip74HC595(14,12,13)

The first for loop makes LED Bar display separately from left to right while the second for loop make it display

separately from right to left.

10

11

12

13

14

15

16

17

18

19

 x=0x01

 for count in range(8):

 chip.shiftOut(1,x) #High bit is sent first

 x=x<<1

 time.sleep_ms(100)

 x=0x01

 for count in range(8):

 chip.shiftOut(0,x) #Low bit is sent first

 x=x<<1

 time.sleep_ms(100)

http://www.freenove.com/

Any concerns?  support@freenove.com

163 Chapter 13 74HC595 & LED Bar Graph

█ www.freenove.com

Reference

Class Chip74HC595

Before each use of the object Chip74HC595, make sure my74HC595.py has been uploaded to “/” of

ESP8266, and then add the statement “from my74HC595 import Chip74HC595” to the top of the python

file.

Chip74HC595():An object. By default, 74HC595’s DS pin is connected to Pin(14) of ESP8266, ST_CP pin is

connected to ESP8266’s Pin(12) and OE pin is connected to ESP’s Pin(5). If you need to modify the pins,

just do the following operations.

chip=Chip74HC595() or chip=Chip74HC595(14,12,13,5)

shiftOut(direction, data): Write data to 74HC595.

direction: 1/0. “1” presents that high-order byte will be sent first while “0” presents that low-order byte

will be sent first.

data：The content that is sent, which is one-byte data.

clear(): Clear the latch data of 74HC595.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 14 74HC595 & 7-Segment Display. 164 www.freenove.com █

Chapter 14 74HC595 & 7-Segment Display.

In this chapter, we will introduce the 7-Segment Display.

Project 14.1 7-Segment Display.

We will use 74HC595 to control 7-segment display and make it display hexadecimal character "0-F".

Component List

ESP8266 x1

USB cable

Breadboard x1

74HC595 x1

7-segment display x1

Resistor 220Ω x8

Jumper wire M/M x19

http://www.freenove.com/

Any concerns?  support@freenove.com

165 Chapter 14 74HC595 & 7-Segment Display.

█ www.freenove.com

Component knowledge

7-segment display

A 7-Segment Display is a digital electronic display device. There is a figure "8" and a decimal point represented,

which consists of 8 LEDs. The LEDs have a Common Anode and individual Cathodes. Its internal structure and

pin designation diagram is shown below:

As we can see in the above circuit diagram, we can control the state of each LED separately. Also, by combining

LEDs with different states of ON and OFF, we can display different characters (Numbers and Letters). For

example, to display a “0”: we need to turn ON LED segments A, B, C, D, E and F, and turn OFF LED segments

G and DP.

In this project, we will use a 7-Segment Display with a Common Anode. Therefore, when there is an input low

level to an LED segment the LED will turn ON. Defining segment “A” as the lowest level and segment “DP” as

the highest level, from high to low would look like this: “DP”, “G”, “F”, “E”, “D”, “C”, “B”, “A”. Character "0"

corresponds to the code: 1100 0000b=0xc0.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 14 74HC595 & 7-Segment Display. 166 www.freenove.com █

For detailed code values, please refer to the following table (common anode).

CHAR DP G F E D C B A Hex ASCII

0 1 1 0 0 0 0 0 0 0xc0 1100 0000

1 1 1 1 1 1 0 0 1 0xf9 1111 1001

2 1 0 1 0 0 1 0 0 0xa4 1010 0100

3 1 0 1 1 0 0 0 0 0xb0 1011 0000

4 1 0 0 1 1 0 0 1 0x99 1001 1001

5 1 0 0 1 0 0 1 0 0x92 1001 0010

6 1 0 0 0 0 0 1 0 0x82 1000 0010

7 1 1 1 1 1 0 0 0 0xf8 1111 1000

8 1 0 0 0 0 0 0 0 0x80 1000 0000

9 1 0 0 1 0 0 0 0 0x90 1001 0000

A 1 0 0 0 1 0 0 0 0x88 1000 1000

B 1 0 0 0 0 0 1 1 0x83 1000 0011

C 1 1 0 0 0 1 1 0 0xc6 1100 0110

D 1 0 1 0 0 0 0 1 0xa1 1010 0001

E 1 0 0 0 0 1 1 0 0x86 1000 0110

F 1 0 0 0 1 1 1 0 0x8e 1000 1110

http://www.freenove.com/

Any concerns?  support@freenove.com

167 Chapter 14 74HC595 & 7-Segment Display.

█ www.freenove.com

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 14 74HC595 & 7-Segment Display. 168 www.freenove.com █

Code

In this section, the 74HC595 is used in the same way as in the previous section, but with different values

transferred. We can learn how to master the digital display by sending the code value of "0" - "F".

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes” 

“14.1_74HC595_and_7_segment_display”.

Select “my74HC595.py”, right click your mouse to select “Upload to /”, wait for “my74HC595.py” to be

uploaded to ESP8266 and then double click“74HC595_and_7_segment_display.py”.

14.1_74HC595_and_7_segment_display

Click “Run current script”，and you'll see a 1-bit, 7-segment display displaying 0-f in a loop.

http://www.freenove.com/

Any concerns?  support@freenove.com

169 Chapter 14 74HC595 & 7-Segment Display.

█ www.freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

import time

from my74HC595 import Chip74HC595

lists =[0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8,

 0x80, 0x90, 0x88, 0x83, 0xc6, 0xa1, 0x86, 0x8e]

chip = Chip74HC595(14,12,13)

try:

 while True:

 for count in range(16):

 chip.shiftOut(0,lists[count])

 time.sleep_ms(500)

except:

 pass

Import time and my74HC595 modules.

1

2

import time

from my74HC595 import Chip74HC595

Put the encoding "0" - "F" into the list.

4

5

lists =[0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8,

 0x80, 0x90, 0x88, 0x83, 0xc6, 0xa1, 0x86, 0x8e]

Define an object, whose pins applys default configuration, to drive 74HC595.

7 chip = Chip74HC595(14,12,13)

Send data of digital tube to 74HC595 chip.

11 chip.shiftOut(0,lists[count])

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 15 Motor & Driver 170 www.freenove.com █

Chapter 15 Motor & Driver

Project 15.1 Control Motor with Potentiometer

Control the direction and speed of the motor with a potentiometer.

Component List

ESP8266 x1

USB cable

Breadboard x1

Breadboard Power module x1

Jumper wire M/M x12

9V battery (prepared by yourself) & battery line

http://www.freenove.com/

Any concerns?  support@freenove.com

171 Chapter 15 Motor & Driver

█ www.freenove.com

Rotary potentiometer x1

Motor x1

L293D

Component knowledge

L293D

L293D is an IC Chip (Integrated Circuit Chip) with a 4-channel motor drive. You can drive a Unidirectional DC

Motor with 4 ports or a Bi-Directional DC Motor with 2 ports or a Stepper Motor (Stepper Motors are covered

later in this Tutorial).

Port description of L293D module is as follows:

Pin name Pin number Description

In x 2, 7, 10, 15 Channel x digital signal input pin

Out x 3, 6, 11, 14 Channel x output pin, input high or low level according to In x pin, get

connected to +Vmotor or 0V

Enable1 1 Channel 1 and channel 2 enable pin, high level enable

Enable2 9 Channel 3 and channel 4 enable pin, high level enable

0V 4, 5, 12, 13 Power cathode (GND)

+V 16 Positive electrode (VCC) of power supply, supply voltage 3.0~36V

+Vmotor 8 Positive electrode of load power supply, provide power supply for the Out

pin x, the supply voltage is +V~36V

For more detail, please refer to the datasheet for this IC Chip.

When using L293D to drive DC motor, there are usually two connection options.

The following connection option uses one channel of the L239D, which can control motor speed through

the PWM, However the motor then can only rotate in one direction.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 15 Motor & Driver 172 www.freenove.com █

http://www.freenove.com/

Any concerns?  support@freenove.com

173 Chapter 15 Motor & Driver

█ www.freenove.com

The following connection uses two channels of the L239D: one channel outputs the PWM wave, and the

other channel connects to GND, therefore you can control the speed of the motor. When these two channel

signals are exchanged, not only can they control the speed of motor, but also control the direction of the

motor.

In practical use the motor is usually connected to channels 1 and 2 by outputting different levels to in1 and

in2 to control the rotational direction of the motor, and output to the PWM wave to Enable1 port to control

the motor’s rotational speed. If the motor is connected to channel 3 and 4 by outputting different levels to

in3 and in4 to control the motor's rotation direction, and output to the PWM wave to Enable2 pin to control

the motor’s rotational speed.

GND

GND

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 15 Motor & Driver 174 www.freenove.com █

Circuit

Use caution when connecting this circuit because the DC Motor is a high-power component. Do not use the

power provided by the ESP8266 to power the motor directly, as this may cause permanent damage to

your RPi! The logic circuit can be powered by the ESP8266’s power or an external power supply, which should

share a common ground with ESP8266.

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Select 5V

Select 3.3V

Press power switch

when using.

http://www.freenove.com/

Any concerns?  support@freenove.com

175 Chapter 15 Motor & Driver

█ www.freenove.com

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “17.1_Motor_And_Driver” and

double click “Motor_And_Driver.py”.

17.1_Motor_And_Driver

Click “Run current script”, rotate the potentiometer in one direction and the motor speeds up slowly in one

direction. Rotate the potentiometer in the other direction and the motor will slow down to stop. And then

rotate it in the original direction to accelerate the motor.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 15 Motor & Driver 176 www.freenove.com █

512

less than 512

greater than 512

http://www.freenove.com/

Any concerns?  support@freenove.com

177 Chapter 15 Motor & Driver

█ www.freenove.com

The following is the Code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

from machine import ADC,Pin,PWM

import time

import math

in1Pin=Pin(12, Pin.OUT)

in2Pin=Pin(14, Pin.OUT)

enablePin=Pin(13, Pin.OUT)

pwm=PWM(enablePin,1000)

adc=ADC(0)

def driveMotor(dir,spd):

 if dir :

 in1Pin.value(1)

 in2Pin.value(0)

 else :

 in1Pin.value(0)

 in2Pin.value(1)

 pwm.duty(spd)

try:

 while True:

 potenVal = adc.read()

 rotationSpeed = potenVal - 512

 if (potenVal > 512):

 rotationDir = 1;

 else:

 rotationDir = 0;

 rotationSpeed=int(math.fabs((potenVal-511)*2)-1)

 driveMotor(rotationDir,rotationSpeed)

 time.sleep_ms(10)

except:

 pass

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 15 Motor & Driver 178 www.freenove.com █

The ADC of ESP8266 has a 10-bit accuracy, corresponding to a range from 0 to 1023. In this program, set the

number 512 as the midpoint. If the value of ADC is less than 512, make the motor rotate in one direction. If

the value of ADC is greater than 512, make the motor rotate in the other direction. Subtract 512 from the

ADC value and take the absolute value, and then divide this result by 2 to be the speed of the motor.

23

24

25

26

27

28

29

30

31

 potenVal = adc.read()

 rotationSpeed = potenVal - 512

 if (potenVal > 512):

 rotationDir = 1;

 else:

 rotationDir = 0;

 rotationSpeed=int(math.fabs((potenVal-511)*2)-1)

 driveMotor(rotationDir,rotationSpeed)

 time.sleep_ms(10)

Initialize pins of L293D chip.

5

6

7

8

9

in1Pin=Pin(12, Pin.OUT)

in2Pin=Pin(14, Pin.OUT)

enablePin=Pin(13, Pin.OUT)

pwm=PWM(enablePin,1000)

Initialize ADC pins, set the range of voltage to 0-3.3V and the acquisition width of data to 0-1023.

10 adc=ADC(0)

Function driveMotor is used to control the rotation direction and speed of the motor. The dir represents

direction while spd refers to speed.

12

13

14

15

16

17

18

19

def driveMotor(dir,spd):

 if dir :

 in1Pin.value(1)

 in2Pin.value(0)

 else :

 in1Pin.value(0)

 in2Pin.value(1)

 pwm.duty(spd)

http://www.freenove.com/

Any concerns?  support@freenove.com

179 Chapter 19 Stepper Motor

█ www.freenove.com

Chapter 19 Stepper Motor

In this project, we will learn how to drive a Stepper Motor, and understand its working principle.

Project 19.1 Stepping Motor

Component List

ESP8266 x1

USB cable

Breadboard x1

Stepping Motor x1

ULN2003 Stepping motorDriver x1

Jumper wire F/M x8

Breadboard Power module x1

9V battery (prepared by yourself) & battery line

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 19 Stepper Motor 180 www.freenove.com █

Component knowledge

Stepper Motor x1

Stepper Motors are an open-loop control device, which converts an electronic pulse signal into angular

displacement or linear displacement. In a non-overload condition, the speed of the motor and the location

of the stops depend only on the pulse signal frequency as well as the number of pulses and are not affected

by changes in load as with a DC Motor. A small Four-Phase Deceleration Stepper Motor is shown here:

The electronic schematic diagram of a Four-Phase Stepper Motor is shown below:

The outside case or housing of the Stepper Motor is the Stator and inside the Stator is the Rotor. There are

a specific number of individual coils, usually an integer multiple of the number of phases the motor has,

when the Stator is powered ON, an electromagnetic field will be formed to attract a corresponding convex

diagonal groove or indentation in the Rotor’s surface. The Rotor is usually made of iron or a permanent

magnet. Therefore, the Stepper Motor can be driven by powering the coils on the Stator in an ordered

sequence (producing a series of “steps” or stepped movements).

http://www.freenove.com/

Any concerns?  support@freenove.com

181 Chapter 19 Stepper Motor

█ www.freenove.com

A common driving process is as follows:

In the course above, the stepping motor rotates a certain angle once, which is called a step. By controlling the

number of rotation steps, you can control the stepping motor rotation angle. By controlling the time between

two steps, you can control the stepping motor rotation speed. When rotating clockwise, the order of coil

powered on is: ABCDA…… . And the rotor will rotate in accordance with the order, step by step

down, called four steps four pats. If the coils is powered on in the reverse order, DCBAD… , the

rotor will rotate in anti-clockwise direction.

There are other methods to control Stepper Motors, such as: connect A phase, then connect A B phase, the

stator will be located in the center of A B, which is called a half-step. This method can improve the stability of

the Stepper Motor and reduces noise. The sequence of powering the coils looks like this: A ABB BCC

CDDDAA……, the rotor will rotate in accordance to this sequence at a half-step at a time, called

four-steps, eight-part. Conversely, if the coils are powered ON in the reverse order the Stepper Motor will

rotate in the opposite direction.

The stator in the Stepper Motor we have supplied has 32 magnetic poles. Therefore, to complete one full

revolution requires 32 full steps. The rotor (or output shaft) of the Stepper Motor is connected to a speed

reduction set of gears and the reduction ratio is 1:64. Therefore, the final output shaft (exiting the Stepper

Motor’s housing) requires 32 X 64 = 2048 steps to make one full revolution.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 19 Stepper Motor 182 www.freenove.com █

ULN2003 Stepping motor driver

A ULN2003 Stepper Motor Driver is used to convert weak signals into more powerful control signals in order

to drive the Stepper Motor. In the illustration below, the input signal IN1-IN4 corresponds to the output signal

A-D, and 4 LEDs are integrated into the board to indicate the state of these signals. The PWR interface can

be used as a power supply for the Stepper Motor. By default, PWR and VCC are connected.

http://www.freenove.com/

Any concerns?  support@freenove.com

183 Chapter 19 Stepper Motor

█ www.freenove.com

Circuit

When building the circuit, note that rated voltage of the Stepper Motor is 5V, and we need to use the

Breadboard power supply independently. Additionally, the Breadboard power supply needs to share Ground

with ESP8266.

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Select 5V

Select OFF

Press power switch

when using.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 19 Stepper Motor 184 www.freenove.com █

Code

This code uses the four-step, four-part mode to drive the Stepper Motor in the clockwise and anticlockwise

directions.

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “19.1_Stepping_Motor”. Select

“stepmotor.py”, right click your mouse to select “Upload to /”, wait for “myservo.py” to be uploaded to

ESP8266 and then double click “Stepping_Motor.py”.

19.1_Stepping_Motor

Click “Run current script”, the stepper motor will rotate 360° clockwise and stop for 1s, and then rotate 360°

anticlockwise and stop for 1s. And it will repeat this action in an endless loop.

http://www.freenove.com/

Any concerns?  support@freenove.com

185 Chapter 19 Stepper Motor

█ www.freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

from stepmotor import mystepmotor

import time

myStepMotor=mystepmotor(13,12,14,16)

try:

 while True:

 myStepMotor.moveSteps(1,32*64,2000)

 myStepMotor.stop()

 time.sleep_ms(1000)

 myStepMotor.moveSteps(0,32*64,2000)

 myStepMotor.stop()

 time.sleep_ms(1000)

except:

 pass

Import time and stepmotor modules.

1

2

from stepmotor import mystepmotor

import time

In this project, we define four pins to drive the stepper motor.

4 myStepMotor=mystepmotor(13,12,14,16)

Call the function moveSteps to control the stepper motor to rotate for 360°and then call function stop() to

stop it.

8

9

 myStepMotor.moveSteps(1,32*64,2000)

 myStepMotor.stop()

Repeatedly control the stepmotor to rotate 360° clockwise and then rotate 360° anti-clockwise.

7

8

9

10

11

12

13

 while True:

 myStepMotor.moveSteps(1,32*64,2000)

 myStepMotor.stop()

 time.sleep_ms(1000)

 myStepMotor.moveSteps(0,32*64,2000)

 myStepMotor.stop()

 time.sleep_ms(1000)

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 19 Stepper Motor 186 www.freenove.com █

Reference

class myServo

Before each use of the object mystepmotor, please make sure that stepmotor.py has been uploaded to

“/” of ESP8266, and then add the statement “from stepmotor import mystepmotor” to the top of the

python file.

mystepmotor(): The object to control the stepper motor. The default control pins are Pin(13), Pin(12),

Pin(14) and Pin(16).

moveSteps(direction,steps,us): Control the stepper motor to rotate a specified number of steps.

direction: The rotation direction of stepper motor.

Steps: Rotation steps of the stepper motor.

us: Time required by the stepper motor to rotate for one step.

moveAround(direction,turns,us): Control the stepper motor to rotate a specific number of turns.

Turns: Number of turns that the stepper motor rotates.

moveAngle(direction,angles,us): Control the stepper motor to rotate a specific angle.

Angles: Rotation angles that the stepper motor rotates.

stop(): Stop the stepper motor.

http://www.freenove.com/

Any concerns?  support@freenove.com

187 Chapter 17 LCD1602

█ www.freenove.com

Chapter 17 LCD1602

In this chapter, we will learn about the LCD1602 Display Screen

Project 17.1 LCD1602

In this section we learn how to use lcd1602 to display something.

Component List

ESP8266 x1

USB cable

Breadboard x1

LCD1602 Module x1

Jumper wire F/M x6

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 17 LCD1602 188 www.freenove.com █

Component knowledge

I2C communication

I2C (Inter-Integrated Circuit) is a two-wire serial communication mode, which can be used for the connection

of micro controllers and their peripheral equipment. Devices using I2C communication must be connected to

the serial data (SDA) line, and serial clock (SCL) line (called I2C bus). Each device has a unique address and

can be used as a transmitter or receiver to communicate with devices connected to the bus.

LCD1602 communication'

The LCD1602 Display Screen can display 2 lines of characters in 16 columns. It is capable of displaying numbers,

letters, symbols, ASCII code and so on. As shown below is a monochrome LCD1602 Display Screen along with

its circuit pin diagram

I2C LCD1602 Display Screen integrates an I2C interface, which connects the serial-input & parallel-output

module to the LCD1602 Display Screen. This allows us to use only 4 lines to the operate the LCD1602.

The serial-to-parallel IC chip used in this module is PCF8574T (PCF8574AT), and its default I2C address is

0x27(0x3F).

http://www.freenove.com/

Any concerns?  support@freenove.com

189 Chapter 17 LCD1602

█ www.freenove.com

Below is the PCF8574 pin schematic diagram and the block pin diagram:

PCF8574 chip pin diagram:

PCF8574 module pin diagram

PCF8574 module pin and LCD1602 pin are corresponding to each other and connected with each other:

So we only need 4 pins to control the 16 pins of the LCD1602 Display Screen through the I2C interface.

In this project, we will use the I2C LCD1602 to display some static characters and dynamic variables.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 17 LCD1602 190 www.freenove.com █

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

191 Chapter 17 LCD1602

█ www.freenove.com

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “20.1_I2C_LCD1602”. Select

“I2C_LCD.py”and “LCD_API.py”, right click your mouse to select “Upload to /”, wait for “I2C_LCD.py” and

“LCD_API.py” to be uploaded to ESP8266 and then double click “I2C_LCD1602.py”.

20.1_I2C_LCD1602

Click “Run current script” and LCD1602 displays some characters.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 17 LCD1602 192 www.freenove.com █

If you cannot see anything on the display or the display is not clear, try rotating the white knob on back of

LCD1602 slowly, which adjusts the contrast, until the screen can display clearly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

import time

from machine import I2C, Pin

from I2C_LCD import I2cLcd

DEFAULT_I2C_ADDR = 0x27

i2c = I2C(scl=Pin(14), sda=Pin(13), freq=400000)

lcd = I2cLcd(i2c, DEFAULT_I2C_ADDR, 2, 16)

try:

lcd.move_to(0, 0)

 lcd.putstr("Hello,world!")

 count = 0

 while True:

 lcd.move_to(0, 1)

 lcd.putstr("Counter:%d" %(count))

 time.sleep_ms(1000)

 count += 1

except:

 pass

Import time, I2C and I2C_LCD modules.

1

2

3

import time

from machine import I2C, Pin

from I2C_LCD import I2cLcd

Instantiate the I2C LCD1602 screen. It should be noted here that if your LCD driver chip uses PCF8574T, set

the I2C address to 0x27, and if uses PCF8574AT, set the I2C address to 0x3F.

5 DEFAULT_I2C_ADDR = 0x27

Initialize I2C pins and associate them with I2CLCD module, and then set the number of rows and columns for

LCD1602.

6

7

i2c = I2C(scl=Pin(14), sda=Pin(13), freq=400000)

lcd = I2cLcd(i2c, DEFAULT_I2C_ADDR, 2, 16)

Move the cursor of LCD1602 to the first row, first column, and print out "Hello, world!"

10

11

lcd.move_to(0, 0)

 lcd.putstr("Hello,world!")

http://www.freenove.com/

Any concerns?  support@freenove.com

193 Chapter 17 LCD1602

█ www.freenove.com

The second line of LCD1602 continuously prints the number of seconds after the ESP8266 program runs.

13

14

15

16

17

 while True:

 lcd.move_to(0, 1)

 lcd.putstr("Counter:%d" %(count))

 time.sleep_ms(1000)

 count += 1

Reference

Class I2cLcd

Before each use of the object I2cLcd, please make sure that I2C_LCD.py and LCD_API.py have been

uploaded to “/” of ESP8266, and then add the statement “from I2C_LCD import I2cLcd” to the top of the

python file.

clear(): Clear the LCD1602 screen display.

show_cursor(): Show the cursor of LCD1602.

hide_cursor(): Hide the cursor of LCD1602.

blink_cursor_on(): Turn on cursor blinking.

blink_cursor_off(): Turn off cursor blinking.

display_on(): Turn on the display function of LCD1602.

display_off(): Turn on the display function of LCD1602.

backlight_on(): Turn on the backlight of LCD1602.

backlight_off(): Turn on the backlight of LCD1602.

move_to(cursor_x, cursor_y): Move the cursor to a specified position.

cursor_x: Column cursor_x

cursor_y: Row cursor_y

putchar(char): Print the character in the bracket on LCD1602

putstr(string): Print the string in the bracket on LCD1602.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 18 Ultrasonic Ranging 194 www.freenove.com █

Chapter 18 Ultrasonic Ranging

In this chapter, we learn a module which use ultrasonic to measure distance, HC SR04.

Project 18.1 Ultrasonic Ranging

In this project, we use ultrasonic ranging module to measure distance, and print out the data in the terminal.

Component List

Component Knowledge

The Ultrasonic Ranging Module uses the principle that ultrasonic waves will reflect when they encounter any

ESP8266 x1

USB cable

Breadboard x1

Jumper wire F/M x6

HC SR04 x1

http://www.freenove.com/

Any concerns?  support@freenove.com

195 Chapter 18 Ultrasonic Ranging

█ www.freenove.com

obstacles. This is possible by counting the time interval between when the ultrasonic wave is transmitted to

when the ultrasonic wave reflects back after encountering an obstacle. Time interval counting will end after

an ultrasonic wave is received, and the time difference (delta) is the total time of the ultrasonic wave’s

journey from being transmitted to being received. Because the speed of sound in air is a constant, and is

about v=340m/s, we can calculate the distance between the Ultrasonic Ranging Module and the obstacle:

s=vt/2.

 2S=V·t.

The HC-SR04 Ultrasonic Ranging Module integrates both an ultrasonic transmitter and a receiver. The

transmitter is used to convert electrical signals (electrical energy) into high frequency (beyond human hearing)

sound waves (mechanical energy) and the function of the receiver is opposite of this. The picture and the

diagram of the HC SR04 Ultrasonic Ranging Module are shown below:

Pin description:

Pin Description

VCC power supply pin

Trig trigger pin

Echo Echo pin

GND GND

Technical specs:

Working voltage: 5V Working current: 12mA

Minimum measured distance: 2cm Maximum measured distance: 200cm

Instructions for Use: output a high-level pulse in Trig pin lasting for least 10us, the module begins to transmit

ultrasonic waves. At the same time, the Echo pin is pulled up. When the module receives the returned

ultrasonic waves from encountering an obstacle, the Echo pin will be pulled down. The duration of high level

in the Echo pin is the total time of the ultrasonic wave from transmitting to receiving, s=vt/2.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 18 Ultrasonic Ranging 196 www.freenove.com █

Circuit

Note that the voltage of ultrasonic module is 5V in the circuit.

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “21.1_Ultrasonic_Ranging”

and double click “Ultrasonic_Ranging.py”.

http://www.freenove.com/

Any concerns?  support@freenove.com

197 Chapter 18 Ultrasonic Ranging

█ www.freenove.com

21.1_Ultrasonic_Ranging

Click “Run current script”, you can use it to measure the distance between the ultrasonic module and the

object. As shown in the following figure:

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 18 Ultrasonic Ranging 198 www.freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

from machine import Pin

import time

trigPin=Pin(13,Pin.OUT,0)

echoPin=Pin(14,Pin.IN,0)

soundVelocity=340

distance=0

def getSonar():

 trigPin.value(1)

 time.sleep_us(10)

 trigPin.value(0)

 while not echoPin.value():

 pass

 pingStart=time.ticks_us()

 while echoPin.value():

 pass

 pingStop=time.ticks_us()

 pingTime=time.ticks_diff(pingStop,pingStart)

 distance=pingTime*soundVelocity//2//10000

return int(distance)

time.sleep_ms(2000)

while True:

 time.sleep_ms(500)

 print(‘Distance: ’,getSonar(),‘cm’)

Define the control pins of the ultrasonic ranging module.

4

5

trigPin=Pin(13,Pin.OUT,0)

echoPin=Pin(14,Pin.IN,0)

Set the speed of sound.

7

8

soundVelocity=340

distance=0

Subfunction getSonar() is used to start the Ultrasonic Module to begin measurements, and return the

measured distance in centimeters. In this function, first let trigPin send 10us high level to start the Ultrasonic

Module. Then use pulseIn() to read the Ultrasonic Module and return the duration time of high level. Finally,

the measured distance according to the time is calculated.

10

11

12

13

14

15

def getSonar():

 trigPin.value(1)

 time.sleep_us(10)

 trigPin.value(0)

 while not echoPin.value():

 pass

http://www.freenove.com/

Any concerns?  support@freenove.com

199 Chapter 18 Ultrasonic Ranging

█ www.freenove.com

16

17

18

19

20

21

22

 pingStart=time.ticks_us()

 while echoPin.value():

 pass

 pingStop=time.ticks_us()

 pingTime=time.ticks_diff(pingStop,pingStart)

 distance=pingTime*soundVelocity//2//10000

return int(distance)

Delay for 2 seconds and wait for the ultrasonic module to stabilize. Print data obtained from ultrasonic module

every 500 milliseconds

24

25

26

27

time.sleep_ms(2000)

while True:

 time.sleep_ms(500)

 print(‘Distance: ’,getSonar(),‘cm’)

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 18 Ultrasonic Ranging 200 www.freenove.com █

Project 18.2 Ultrasonic Ranging

Component List and Circuit

Component List and Circuit are the same as the previous section.

Code

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “21.2_Ultrasonic_Ranging”.

Select “hcsr04.py”, right click your mouse to select “Upload to /”, wait for “hcsr04.py” to be uploaded to

ESP8266 and then double click “Ultrasonic_Ranging.py”.

21.2_Ultrasonic_Ranging

http://www.freenove.com/

Any concerns?  support@freenove.com

201 Chapter 18 Ultrasonic Ranging

█ www.freenove.com

Click “Run current script”. Use the ultrasonic module to measure distance. As shown in the following figure:

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

from hcsr04 import SR04

import time

SR=SR04(13,14)

time.sleep_ms(2000)

try:

 while True:

 print('Distance: ',SR.distance(),'cm')

 time.sleep_ms(500)

except:

 pass

Import hcsr04 module.

1 from hcsr04 import SR04

Define an ultrasonic object and associate with the pins.

3 SR=SR04(13,14)

Obtain the distance data returned from the ultrasonic ranging module.

9 SR.distance()

Obtain the ultrasonic data every 500 milliseconds and print them out in “Shell”.

8

9

10

 while True:

 print('Distance: ',SR.distance(),'cm')

 time.sleep_ms(500)

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 18 Ultrasonic Ranging 202 www.freenove.com █

Reference

Class hcsr04

Before each use of object SR04, please add the statement “from hcsr04 import SR04” to the top of python

file.

SR04(): Object of ultrasonic module. By default, trig pin is Pin(13) and echo pinis Pin(14).

distanceCM(): Obtain the distance from the ultrasonic to the measured object with the data type being int

type, and the unit being cm.

distanceMM(): Obtain the distance from the ultrasonic to the measured object with the data type being

int type, and the unit being mm.

distance(): Obtain the distance from the ultrasonic to the measured object with the data type being float

type, and the unit being cm.

http://www.freenove.com/

Any concerns?  support@freenove.com

203 Chapter 19 Infrared Remote

█ www.freenove.com

Chapter 19 Infrared Remote

In this chapter, we'll learn how to use an infrared remote control, and control a LED.

Project 19.1 Infrared Remote Control

First, we need to understand how infrared remote control works, then get the command sent from infrared

remote control.

Component List

ESP8266 x1

USB cable

Breadboard x1

Jumper wire M/M x6

Infrared Remote x1

(May need CR2025 battery x1, please check the holder)

Infrared Remote x1

Resistor 10kΩ x1

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 19 Infrared Remote 204 www.freenove.com █

Component knowledge

Infrared Remote

An infrared(IR) remote control is a device with a certain number of buttons. Pressing down different buttons

will make the infrared emission tube, which is located in the front of the remote control, send infrared ray with

different command. Infrared remote control technology is widely used in electronic products such as TV, air

conditioning, etc. Thus making it possible for you to switch TV programs and adjust the temperature of the

air conditioning when away from them. The remote control we use is shown below:

Infrared receiver

An infrared(IR) receiver is a component which can receive the infrared light, so we can use it to detect the

signal emitted by the infrared remote control. DATA pin here outputs the received infrared signal.

Pull out

http://www.freenove.com/

Any concerns?  support@freenove.com

205 Chapter 19 Infrared Remote

█ www.freenove.com

When you use the infrared remote control, the infrared remote control sends a key value to the receiving

circuit according to the pressed keys. We can program the ESP8266 to do things like lighting, when a key

value is received.

The following is the key value that the receiving circuit will receive when each key of the infrared remote

control is pressed.

ICON KEY Value ICON KEY Value

FFA25D

FFB04F

FFE21D

FF30CF

FF22DD

FF18E7

FF02FD

FF7A85

FFC23D

FF10EF

FFE01F

FF38C7

FFA857

FF5AA5

FF906F

FF42BD

FF6897

FF4AB5

FF9867

FF52AD

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 19 Infrared Remote 206 www.freenove.com █

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

207 Chapter 19 Infrared Remote

█ www.freenove.com

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “23.1_Infrared_Remote”. Select

“irrecvdata.py”, right click your mouse to select “Upload to /”, wait for “irrecvdata.py” to be uploaded to

ESP8266 and then double click “Infrared_Remote.py”.

23.1_Infrared_Remote

Click “Run current script”, press the key of the infrared remote and the key value will be printed in “Shell”.

As shown in the illustration below:

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 19 Infrared Remote 208 www.freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

from irrecvdata import irGetCMD

recvPin = irGetCMD(5)

try:

 while True:

 irValue = recvPin.ir_read()

 if irValue:

 print(irValue)

except:

 pass

Import the infrared decoder.

1 from irrecvdata import irGetCMD

Associate the infrared decoder with Pin(5).

3 recvPin = irGetCMD(5)

Call ir_read() to read the value of the pressed key and assign it to IRValue.

6 irValue = recvPin.ir_read()

When infrared key value is obtained, print it out in” Shell”.

5

6

7

8

 while True:

 irValue = recvPin.ir_read()

 if irValue:

 print(irValue)

Reference

Class irrecvdata

Before each use of the object irrecvdata, please add the statement “from irrecvdata import irGetCMD” to the

top of the python file.

irGetCMD(): Object of infrared encoder, which is associated with Pin(15) by default.

ir_read(): The function that reads the key value of infrared remote. When the value is read, it will be returned;

when no value is obtained, character None will be returned.

http://www.freenove.com/

Any concerns?  support@freenove.com

209 Chapter 19 Infrared Remote

█ www.freenove.com

Project 19.2 Control LED through Infrared Remote

In this project, we will control the brightness of LED lights through an infrared remote control.

Component List

ESP8266 x1

USB cable

Breadboard x1

Jumper wire M/M x12

Infrared Remote x1

(May need CR2025 battery x1, please check the

holder)

LED x1

Resistor 220Ω x1

Infrared receiver x1

Resistor 10kΩ x1

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 19 Infrared Remote 210 www.freenove.com █

NPN transistorx1

(S8050)

Active buzzer x1

Resistor 1kΩ x1

Circuit

Schematic diagram

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

Any concerns?  support@freenove.com

211 Chapter 19 Infrared Remote

█ www.freenove.com

Code

The Code controls the brightness of the LED by determining the key value of the infrared received.

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes” 

“23.2_Control_LED_through_Infrared_Remote”. Select “irrecvdata.py”, right click your mouse to select

“Upload to /”, wait for “irrecvdata.py” to be uploaded to ESP8266 and then double click

“Control_LED_through_Infrared_Remote.py”.

23.2_Control_LED_through_Infrared_Remote

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 19 Infrared Remote 212 www.freenove.com █

Click “Run current script”. When pressing "0", "1", "2", "3" of the infrared remote control, the buzzer will

sound once, and the brightness of the LED light will change correspondingly.

Rendering

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

from machine import Pin,PWM

import time

from irrecvdata import irGetCMD

ledPin=PWM(Pin(14,Pin.OUT),10000)

buzzerPin=Pin(13,Pin.OUT)

recvPin = irGetCMD(5)

def handleControl(value):

 buzzerPin.value(1)

 time.sleep_ms(100)

 buzzerPin.value(0)

 if value == '0xff6897': #0

 print('0')

 ledPin.duty(1)

 elif value == '0xff30cf': #1

 print('1')

 ledPin.duty(100)

 elif value == '0xff18e7': #2

 print('2')

 ledPin.duty(300)

 elif value == '0xff7a85': #3

 print('3')

 ledPin.duty(1000)

 else:

 return

http://www.freenove.com/

Any concerns?  support@freenove.com

213 Chapter 19 Infrared Remote

█ www.freenove.com

28

29

30

31

32

33

34

35

try:

 while True:

 irValue = recvPin.ir_read()

 if irValue:

 print(irValue)

 handleControl(irValue)

except:

 ledPin.deinit()

The handleControl() function is used to execute events corresponding to infrared code values. Every time

when the function is called, the buzzer sounds once and determines the brightness of the LED based on the

infrared key value. If the key value is not "0", "1", "2", "3", the buzzer sounds once, but the brightness of LED

will not change.

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

def handleControl(value):

 buzzerPin.value(1)

 time.sleep_ms(100)

 buzzerPin.value(0)

 if value == '0xff6897': #0

 print('0')

 ledPin.duty(1)

 elif value == '0xff30cf': #1

 print('1')

 ledPin.duty(100)

 elif value == '0xff18e7': #2

 print('2')

 ledPin.duty(300)

 elif value == '0xff7a85': #3

 print('3')

 ledPin.duty(1000)

 else:

 return

Each time the key value of IR remote is received, function handleControl() will be called to process it.

28

29

30

31

32

33

34

35

try:

 while True:

 irValue = recvPin.ir_read()

 if irValue:

 print(irValue)

 handleControl(irValue)

except:

 ledPin.deinit()

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 20 WiFi Working Modes 214 www.freenove.com █

Chapter 20 WiFi Working Modes

In this chapter, we'll focus on the WiFi infrastructure for ESP8266.

ESP8266 has 3 different WiFi operating modes: Station mode, AP mode and AP+Station mode. All WiFi

programming projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi

cannot be used.

Project 20.1 Station mode

Component List

ESP8266 x1

USB cable

Component knowledge

Station mode

When ESP8266 selects Station mode, it acts as a WiFi client. It can connect to the router network and

communicate with other devices on the router via WiFi connection. As shown below, the PC is connected to

the router, and if ESP8266 wants to communicate with the PC, it needs to be connected to the router.

http://www.freenove.com/

Any concerns?  support@freenove.com

215 Chapter 20 WiFi Working Modes

█ www.freenove.com

Circuit

Connect Freenove ESP8266 to the computer using the USB cable.

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “28.1_Station_mode” and

double click “Station_mode.py”.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 20 WiFi Working Modes 216 www.freenove.com █

28.1_Station_mode

Enter the correct Router

name and password.

http://www.freenove.com/

Any concerns?  support@freenove.com

217 Chapter 20 WiFi Working Modes

█ www.freenove.com

Because the names and passwords of routers in various places are different, before the Code runs, users need

to enter the correct router’s name and password in the box as shown in the illustration above.

After making sure the router name and password are entered correctly, compile and upload codes to ESP8266,

wait for ESP8266 to connect to your router and print the IP address assigned by the router to ESP8266 in

“Shell”.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

import time

import network

ssidRouter = '********' #Enter the router name

passwordRouter = '********' #Enter the router password

def STA_Setup(ssidRouter,passwordRouter):

 print("Setup start")

 sta_if = network.WLAN(network.STA_IF)

 if not sta_if.isconnected():

 print('connecting to',ssidRouter)

 sta_if.active(True)

 sta_if.connect(ssidRouter,passwordRouter)

 while not sta_if.isconnected():

 pass

 print('Connected, IP address:', sta_if.ifconfig())

 print("Setup End")

try:

 STA_Setup(ssidRouter,passwordRouter)

except:

 sta_if.disconnect()

Import network module.

2 import network

Enter correct router name and password.

4

5

const char *ssid_Router = "********"; //Enter the router name

const char *password_Router = "********"; //Enter the router password

Set ESP8266 in Station mode.

9 sta_if = network.WLAN(network.STA_IF)

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 20 WiFi Working Modes 218 www.freenove.com █

Activate ESP8288 Station mode, initiate a connection request to the router and enter the password to

connect.

12

13

 sta_if.active(True)

 sta_if.connect(ssidRouter,passwordRouter)

Wait for ESP8266 to connect to router until they connect to each other successfully.

14

15

 while not sta_if.isconnected():

 pass

Print the IP address assigned to ESP8266 in “Shell”.

16 Print(‘Connected, IP address:’, sta_if.ifconfig())

Reference

Class network

Before each use of network, please add the statement “import network” to the top of the python file.

WLAN(interface_id): Set to WiFi mode.

 network.STA_IF: Client, connecting to other WiFi access points.

network.AP_IF: Access points, allowing other WiFi clients to connect.

active(is_active): With parameters, it is to check whether to activate the network interface; Without

parameters, it is to query the current state of the network interface.

scan(ssid, bssid, channel, RSSI, authmode, hidden): Scan for wireless networks available nearby (only

scan on STA interface), return a tuple list of information about the WiFi access point.

bssid: The hardware address of the access point, returned in binary form as a byte object. You can use

ubinascii.hexlify() to convert it to ASCII format.

authmode: Access type

 AUTH_OPEN = 0

 AUTH_WEP = 1

 AUTH_WPA_PSK = 2

 AUTH_WPA2_PSK = 3

 AUTH_WPA_WPA2_PSK = 4

 AUTH_MAX = 6

Hidden: Whether to scan for hidden access points

 False: Only scanning for visible access points

 True: Scanning for all access points including the hidden ones.

isconnected(): Check whether ESP8266 is connected to AP in Station mode. In STA mode, it returns True

if it is connected to a WiFi access point and has a valid IP address; Otherwise it returns False.

connect(ssid, password): Connecting to wireless network.

ssid: WiFiname

password: WiFipassword

disconnect(): Disconnect from the currently connected wireless network.

http://www.freenove.com/

Any concerns?  support@freenove.com

219 Chapter 20 WiFi Working Modes

█ www.freenove.com

Project 20.2 AP mode

Component List & Circuit

Component List & Circuit are the same as in Section 28.1.

Component knowledge

AP mode

When ESP8266 selects AP mode, it creates a hotspot network that is separated from the Internet and waits

for other WiFi devices to connect. As shown in the figure below, ESP8266 is used as a hotspot. If a mobile

phone or PC wants to communicate with ESP8266, it must be connected to the hotspot of ESP8266. Only after

a connection is established with ESP8266 can they communicate.

Circuit

Connect Freenove ESP8266 to the computer using the USB cable.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 20 WiFi Working Modes 220 www.freenove.com █

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “28.2_AP_mode”. and double

click “AP_mode.py”.

28.2_AP_mode

Before the Code runs, you can make any changes to the AP name and password for ESP8266 in the box as

shown in the illustration above. Of course, you can leave it alone by default.

Click “Run current script”, open the AP function of ESP8266 and print the access point information.

Set a name and a password

for ESP8266 AP.

http://www.freenove.com/

Any concerns?  support@freenove.com

221 Chapter 20 WiFi Working Modes

█ www.freenove.com

Turn on the WiFi scanning function of your phone, and you can see the ssid_AP on ESP8266, which is called

"WiFi_Name" in this Code. You can enter the password "12345678" to connect it or change its AP name and

password by modifying Code.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

import network

ssidAP = 'WiFi_Name' #Enter the router name

passwordAP = '12345678' #Enter the router password

local_IP = '192.168.1.10'

gateway = '192.168.1.1'

subnet = '255.255.255.0'

dns = '8.8.8.8'

ap_if = network.WLAN(network.AP_IF)

def AP_Setup(ssidAP, passwordAP):

 ap_if.ifconfig([local_IP,gateway,subnet,dns])

 print("Setting soft-AP ... ")

 ap_if.config(essid=ssidAP,authmode=network.AUTH_WPA_WPA2_PSK, password=passwordAP)

 ap_if.active(True)

 print('Success, IP address:', ap_if.ifconfig())

 print("Setup End\n")

try:

 AP_Setup(ssidAP,passwordAP)

except:

 ap_if.disconnect()

Import network module.

1 import network

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 20 WiFi Working Modes 222 www.freenove.com █

Enter correct AP name and password.

3

4

ssidAP = 'WiFi_Name' #Enter the router name

passwordAP = '12345678' #Enter the router password

Set ESP8266 in AP mode.

11 ap_if = network.WLAN(network.AP_IF)

Configure IP address, gateway and subnet mask for ESP8266.

14 ap_if.ifconfig([local_IP,gateway,subnet,dns])

Turn on an AP in ESP8266, whose name is set by ssid_AP and password is set by password_AP.

16

17

 ap_if.config(essid=ssidAP,authmode=network.AUTH_WPA_WPA2_PSK, password=passwordAP)

 ap_if.active(True)

If the program is running abnormally, the AP disconnection function will be called.

14 ap_if.disconnect()

Reference

Class network

Before each use of network, please add the statement “import network” to the top of the python file.

WLAN(interface_id): Set to WiFi mode.

 network.STA_IF: Client, connecting to other WiFi access points

network.AP_IF: Access points, allowing other WiFi clients to connect

active(is_active): With parameters, it is to check whether to activate the network interface; Without

parameters, it is to query the current state of the network interface

isconnected(): In AP mode, it returns True if it is connected to the station; otherwise it returns False.

connect(ssid, password): Connecting to wireless network

ssid: WiFiname

password: WiFipassword

config(essid, channel): To obtain the MAC address of the access point or to set the WiFi channel and the

name of the WiFi access point.

 ssid: WiFi account name

channel: WiFichannel

ifconfig([(ip, subnet, gateway, dns)]): Without parameters, it returns a 4-tuple (ip, subnet_mask, gateway,

DNS_server); With parameters, it configures static IP.

ip: IPaddress

subnet_mask: subnet mask

gateway: gateway

DNS_server: DNSserver

disconnect(): Disconnect from the currently connected wireless network

status(): Return the current status of the wireless connection

http://www.freenove.com/

Any concerns?  support@freenove.com

223 Chapter 20 WiFi Working Modes

█ www.freenove.com

Project 20.3 AP+Station mode

Component List

ESP8266 x1

Micro USB Wire x1

Component knowledge

AP+Station mode

In addition to AP mode and Station mode, ESP8266 can also use AP mode and Station mode at the same

time. This mode contains the functions of the previous two modes. Turn on ESP8266's Station mode, connect

it to the router network, and it can communicate with the Internet via the router. At the same time, turn on

its AP mode to create a hotspot network. Other WiFi devices can choose to connect to the router network or

the hotspot network to communicate with ESP8266.

Circuit

Connect Freenove ESP8266 to the computer using the USB cable.

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 20 WiFi Working Modes 224 www.freenove.com █

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “28.3_AP+STA_mode”and

double click “AP+STA_mode.py”.

28.3_AP+STA_mode

It is analogous to Project 20.1 and Project 20.2. Before running the Code, you need to modify ssidRouter,

passwordRouter, ssidAP and passwordAP shown in the box of the illustration above.

After making sure that the code is modified correctly, click “Run current script” and the “Shell” will display as

follows:

Please enter the correct

names and passwords of

Router and AP.

http://www.freenove.com/

Any concerns?  support@freenove.com

225 Chapter 20 WiFi Working Modes

█ www.freenove.com

Turn on the WiFi scanning function of your phone, and you can see the ssidAP on ESP8266.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

import network

ssidRouter = '********' #Enter the router name

passwordRouter = '********' #Enter the router password

ssidAP = 'WiFi_Name'#Enter the AP name

passwordAP = '12345678' #Enter the AP password

local_IP = '192.168.4.150'

gateway = '192.168.4.1'

subnet = '255.255.255.0'

dns = '8.8.8.8'

sta_if = network.WLAN(network.STA_IF)

ap_if = network.WLAN(network.AP_IF)

def STA_Setup(ssidRouter,passwordRouter):

 print("Setting soft-STA ... ")

 if not sta_if.isconnected():

 print('connecting to',ssidRouter)

 sta_if.active(True)

 sta_if.connect(ssidRouter,passwordRouter)

 while not sta_if.isconnected():

 pass

 print('Connected, IP address:', sta_if.ifconfig())

 print("Setup End")

def AP_Setup(ssidAP,passwordAP):

 ap_if.ifconfig([local_IP,gateway,subnet,dns])

 print("Setting soft-AP ... ")

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 20 WiFi Working Modes 226 www.freenove.com █

31

32

33

34

35

36

37

38

39

40

41

 ap_if.config(essid=ssidAP,authmode=network.AUTH_WPA_WPA2_PSK, password=passwordAP)

 ap_if.active(True)

 print('Success, IP address:', ap_if.ifconfig())

 print("Setup End\n")

try:

 AP_Setup(ssidAP,passwordAP)

 STA_Setup(ssidRouter,passwordRouter)

except:

 sta_if.disconnect()

 ap_if.idsconnect()

http://www.freenove.com/

Any concerns?  support@freenove.com

227 Chapter 21 TCP/IP

█ www.freenove.com

Chapter 21 TCP/IP

In this chapter, we wil introduce how ESP8266 implements network communications based on TCP/IP protocol.

There are two roles in TCP/IP communication, namely Server and Client, which will be implemented

respectively with two projects in this chaper.

Project 21.1 As Client

In this section, ESP8266 is used as Client to connect Server on the same LAN and communicate with it.

Component List

ESP8266 x1

USB cable

Component knowledge

TCP connection

Before transmitting data, TCP needs to establish a logical connection between the sending end and the

receiving end. It provides reliable and error-free data transmission between the two computers. In the TCP

connection, the client and the server must be clarified. The client sends a connection request to the server,

and each time such a request is proposed, a "three-times handshake" is required.

Three-times handshake: In the TCP protocol, during the preparation phase of sending data, the client and the

server interact three times to ensure the reliability of the connection, which is called "three-times handshake".

The first handshake, the client sends a connection request to the server and waits for the server to confirm.

The second handshake, the server sends a response back to the client informing that it has received the

connection request.

The third handshake, the client sends a confirmation message to the server again to confirm the connection.

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 21 TCP/IP 228 www.freenove.com █

TCP is a connection-oriented, low-level transmission control protocol. After TCP establishes a connection, the

client and server can send and receive messages to each other, and the connection will always exist as long

as the client or server does not initiate disconnection. Each time one party sends a message, the other party

will reply with an ack signal.

The client sends a data

message, and the server

replies with a

confirmation signal.

The server sends a data

message, and the client

replies with a

confirmation signal.

the first handshake

the third handshake

the second handshake

http://www.freenove.com/

Any concerns?  support@freenove.com

229 Chapter 21 TCP/IP

█ www.freenove.com

Install Processing

In this tutorial, we use Processing to build a simple TCP/IP communication platform.

If you've not installed Processing, you can download it by clicking https://processing.org/download/. You can

choose an appropriate version to download according to your PC system.

Unzip the downloaded file to your computer. Click "processing.exe" as the figure below to run this software.

http://www.freenove.com/
https://processing.org/download/

Any concerns?  support@freenove.com

Chapter 21 TCP/IP 230 www.freenove.com █

Use Server mode for communication

Open the “Freenove_Super_Starter_Kit_for_ESP8266/Codes/Micropython_Codes/29.1_TCP_as_Client/

sketchWiFi/sketchWiFi.pde”. Click “Run”.

The new pop-up interface is as follows. If ESP8266 is used as Client, select TCP SERVER mode for sketchWiFi.

When sketchWiFi selects TCP SERVER mode, ESP8266 Code needs to be changed according to sketchWiFi's

displaying of LOCAL IP or LOCAL PORT.

Run

Stop

Server mode

Local IP address

Local port

number

Listening

Clear receive

Receiving

box

Send box

Clear send

Send button

http://www.freenove.com/

Any concerns?  support@freenove.com

231 Chapter 21 TCP/IP

█ www.freenove.com

If ESP8266 serves as Server, select TCP CLIENT mode for sketchWiFi.

When sketchWiFi selects TCP CLIENT mode, the LOCAL IP and LOCAL PORT of sketchWiFi need to be

changed according to the IP address and port number printed by the serial monitor.

Mode selection: select Server mode/Client mode.

IP address: In Server mode, this option does not need to be filled in, and the computer will automatically

obtain the IP address.

In Client mode, fill in the remote IP address to be connected.

Port number: In Server mode, fill in a port number for client devices to make an access connection.

In client mode, fill in port number given by the Server devices to make an access connection.

Start button: In server mode, push the button, and then the computer will serve as Server and open a port

number for Client to make access connection. During this period, the computer will keep

monitoring.

In client mode, before pushing the button, please make sure the server is on, remote IP address

and remote port number is correct; push the button, and the computer will make access

connection to the remote port number of the remote IP as a Client.

clear receive: clear out the content in the receiving text box

clear send: clear out the content in the sending text box

Sending button: push the sending button, the computer will send the content in the text box to others.

Remote IP

address

Remote port

number

Client mode

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 21 TCP/IP 232 www.freenove.com █

Circuit

Connect Freenove ESP8266 to the computer using USB cable.

Code

If you have not installed “ControlP5”, please follow the following steps to continue the installation, if you have

installed, please skip this section.

Open Processing.

Click Add Tool under Tools.

http://www.freenove.com/

Any concerns?  support@freenove.com

233 Chapter 21 TCP/IP

█ www.freenove.com

Select Libraries in the pop-up window.

Input “ControlP5” in the searching box, and then select the option as below. Click “Install” and wait for the

installation to finish.

You can also click Add Library under 'Import Library' under 'Sketch'.

Click it

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 21 TCP/IP 234 www.freenove.com █

http://www.freenove.com/

Any concerns?  support@freenove.com

235 Chapter 21 TCP/IP

█ www.freenove.com

Before running the Code, please open “sketchWiFi.pde.” first, and click “Run”.

The newly pop up window will use the computer’s IP address by default and open a data monitor port. Click

“Listening”。

Click

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 21 TCP/IP 236 www.freenove.com █

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “29.1_TCP_as_Client” and

double click “TCP_as_Client.py”.

Before clicking “Run current script”, please modify the name and password of your router and fill in the

“host” and “port” according to the IP information in processing app shown in the box below:

29.1_TCP_as_Client

Click “Run current script” and in “Shell”, you can see ESP8266 automatically connects to sketchWiFi.

Click

Click

http://www.freenove.com/

Any concerns?  support@freenove.com

237 Chapter 21 TCP/IP

█ www.freenove.com

If you don’t click “Listening” for sketchWiFi, ESP8266 will fail to connect and will print information as follows:

ESP8266 connects with TCP SERVER, and TCP SERVER receives messages from ESP8266, as shown in the figure

below.

The following is the program code:

1

2

3

import network

import socket

import time

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 21 TCP/IP 238 www.freenove.com █

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

ssidRouter = "********" #Enter the router name

passwordRouter = "********" #Enter the router password

host = "********" #input the remote server

port = 8888 #input the remote port

wlan=None

s=None

def connectWifi(ssid,passwd):

 global wlan

 wlan= network.WLAN(network.STA_IF)

 wlan.active(True)

 wlan.disconnect()

 wlan.connect(ssid,passwd)

 while(wlan.ifconfig()[0]=='0.0.0.0'):

 time.sleep(1)

 return True

try:

 connectWifi(ssidRouter,passwordRouter)

 s = socket.socket()

 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

 s.connect((host,port))

 print("TCP Connected to:", host, ":", port)

 s.send('Hello')

 s.send('This is my IP.')

 while True:

 data = s.recv(1024)

 if(len(data) == 0):

 print("Close socket")

 s.close()

 break

 print(data)

 ret=s.send(data)

except:

 print("TCP close, please reset!")

 if (s):

 s.close()

 wlan.disconnect()

 wlan.active(False)

Import network、socket、time modules.

1

2

3

import network

import socket

import time

http://www.freenove.com/

Any concerns?  support@freenove.com

239 Chapter 21 TCP/IP

█ www.freenove.com

Enter the actual router name, password, remote server IP address, and port number.

5

6

7

8

ssidRouter = "********" #Enter the router name

passwordRouter = "********" #Enter the router password

host = "********" #input the remote server

port = 8888 #input the remote port

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 21 TCP/IP 240 www.freenove.com █

Connect specified Router until it is successful.

13

14

15

16

17

18

19

20

21

def connectWifi(ssid,passwd):

 global wlan

 wlan= network.WLAN(network.STA_IF)

 wlan.active(True)

 wlan.disconnect()

 wlan.connect(ssid,passwd)

 while(wlan.ifconfig()[0]=='0.0.0.0'):

 time.sleep(1)

 return True

Connect router and then connect it to remote server.

23

24

25

26

27

 connectWifi(ssidRouter,passwordRouter)

 s = socket.socket()

 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

 s.connect((host,port))

 print("TCP Connected to:", host, ":", port)

Send messages to the remote server, receive the messages from it and print them out, and then send the

messages back to the server.

28

29

30

31

32

33

34

35

36

37

 s.send('Hello')

 s.send('This is my IP.')

 while True:

 data = s.recv(1024)

 if(len(data) == 0):

 print("Close socket")

 s.close()

 break

 print(data)

 ret=s.send(data)

If an exception occurs in the program, for example, the remote server is shut down, execute the following

program, turn off the socket function, and disconnect the WiFi.

39

40

41

42

43

 print("TCP close, please reset!")

 if (s):

 s.close()

 wlan.disconnect()

 wlan.active(False)

http://www.freenove.com/

Any concerns?  support@freenove.com

241 Chapter 21 TCP/IP

█ www.freenove.com

Reference

Class socket

Before each use of socket, please add the statement “import socket” to the top of the python file.

socket([af, type, proto]): Create a socket.

af: address

socket.AF_INET: IPv4

socket.AF_INET6: IPv6

type: type

socket.SOCK_STREAM : TCP stream

socket.SOCK_DGRAM : UDP datagram

socket.SOCK_RAW : Original socket

socket.SO_REUSEADDR : socket reusable

proto: protocol number

socket.IPPROTO_TCP: TCPmode

socket.IPPROTO_UDP: UDPmode

socket.setsockopt(level, optname, value): Set the socket according to the options.

Level: Level of socket option

socket.SOL_SOCKET: Level of socket option. By default, it is 4095.

optname: Options of socket

socket.SO_REUSEADDR: Allowing a socket interface to be tied to an address that is already in use.

value: The value can be an integer or a bytes-like object representing a buffer.

socket.connect(address): To connect to server.

Address: Tuple or list of the server’s address and port number

send(bytes): Send data and return the bytes sent.

recv(bufsize): Receive data and return a bytes object representing the data received.

close(): Close socket.

To learn more please visit: http://docs.micropython.org/en/latest/

http://www.freenove.com/
http://docs.micropython.org/en/latest/

Any concerns?  support@freenove.com

Chapter 21 TCP/IP 242 www.freenove.com █

Project 21.2 As Server

In this section, ESP8266 is used as a Server to wait for the connection and communication with Client on the

same LAN.

Component List

ESP8266 x1

USB cable

Circuit

Connect Freenove ESP8266 to the computer using the USB cable.

http://www.freenove.com/

Any concerns?  support@freenove.com

243 Chapter 21 TCP/IP

█ www.freenove.com

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes”  “29.2_TCP_as_Server” and

double click “TCP_as_Server.py”.

Before clicking “Run current script”, please modify the name and password of your router shown in the box

below.

29.2_TCP_as_Server

After making sure that the router’s name and password are correct, click “Run current script” and in “Shell”,

you can see a server opened by the ESP8266 waiting to connecting to other network devices.

IP address and port

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 21 TCP/IP 244 www.freenove.com █

Processing：

Open the “Freenove_Super_Starter_Kit_for_ESP8266/Codes/MicroPython_Codes/29.2_TCP_as_Server/

sketchWiFi/sketchWiFi.pde”.

Based on the message printed in "Shell", enter the correct IP address and port when processing, and click to

establish a connection with ESP8266 to communicate.

You can enter any information in the “Send Box” of sketchWiFi. Click “Send” and ESP8266 will print the received

messages to “Shell” and send them back to sketchWiFi.

Enter IP address and port of

the serial monitor.

Click

Click

http://www.freenove.com/

Any concerns?  support@freenove.com

245 Chapter 21 TCP/IP

█ www.freenove.com

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 21 TCP/IP 246 www.freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

import network

import socket

import time

ssidRouter = "********" #Enter the router name

passwordRouter = "********" #Enter the router password

port = 8000 #input the remote port

wlan = None

listenSocket = None

def connectWifi(ssid,passwd):

 global wlan

 wlan=network.WLAN(network.STA_IF)

 wlan.active(True)

 wlan.disconnect()

 wlan.connect(ssid,passwd)

 while(wlan.ifconfig()[0]=='0.0.0.0'):

 time.sleep(1)

 return True

try:

 connectWifi(ssidRouter,passwordRouter)

 ip=wlan.ifconfig()[0]

 listenSocket = socket.socket()

 listenSocket.bind((ip,port))

 listenSocket.listen(1)

 listenSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

 print('tcp waiting...')

 while True:

 print("Server IP:",ip,"\tPort:",port)

 print("accepting.....")

 conn,addr = listenSocket.accept()

 print(addr,"connected")

 break

 conn.send('I am Server')

 while True:

 data = conn.recv(1024)

 if(len(data) == 0):

 print("close socket")

 listenSocket.close()

 wlan.disconnect()

 wlan.active(False)

 break

http://www.freenove.com/

Any concerns?  support@freenove.com

247 Chapter 21 TCP/IP

█ www.freenove.com

44

45

46

47

48

49

50

51

52

 else:

 print(data)

 ret = conn.send(data)

except:

 print("Close TCP-Server, please reset.")

 if(listenSocket):

 listenSocket.close()

 wlan.disconnect()

 wlan.active(False)

Call function connectWifi() to connect to router and obtain the dynamic IP that it assigns to ESP8266.

22

23

 connectWifi(ssidRouter,passwordRouter)

 ip=wlan.ifconfig()[0]

Open the socket server, bind the server to the dynamic IP, and open a data monitoring port.

24

25

26

27

 listenSocket = socket.socket()

 listenSocket.bind((ip,port))

 listenSocket.listen(1)

 listenSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

Print the server’s IP address and port, monitor the port and wait for the connection of other network devices.

29

30

31

32

33

34

 while True:

 print("Server IP:",ip,"\tPort:",port)

 print("accepting.....")

 conn,addr = listenSocket.accept()

 print(addr,"connected")

 break

Each time receiving data, print them in “Shell” and send them back to the client.

36

37

38

39

40

41

42

43

44

45

46

 while True:

 data = conn.recv(1024)

 if(len(data) == 0):

 print("close socket")

 listenSocket.close()

 wlan.disconnect()

 wlan.active(False)

 break

 else:

 print(data)

 ret = conn.send(data)

If the client is disconnected, close the server and disconnect WiFi.

47

48

49

50

51

52

except:

 print("Close TCP-Server, please reset.")

 if(listenSocket):

 listenSocket.close()

 wlan.disconnect()

 wlan.active(False)

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 22 Smart Home 248 www.freenove.com █

Chapter 22 Smart Home

In this chapter, we will use ESP8266 to make a simple smart home.We will learn how to control LED lights

through web pages.

Project 22.1 Control_LED_through_Web

In this project, we need to build a Web Service and then use ESP8266 to control the LED through the Web

browser of the PC.Through this example, you can remotely control the appliances in your home to achieve

smart home.

Component List

ESP8266 x1

Micro USB Wire x1

http://www.freenove.com/

Any concerns?  support@freenove.com

249 Chapter 22 Smart Home

█ www.freenove.com

Component knowledge

HTML

HyperText Markup Language (HTML) is a standard Markup Language for creating web pages.It includes

a set of tags that unify documents on the network and connect disparate Internet resources into a logical

whole.HTML text is descriptive text composed of HTML commands that describe text, graphics, animations,

sounds, tables, links, etc.The extension of the HTML file is HTM or HTML.Hyper Text is a way to organize

information.It uses hyperlinks to associate words and charts in Text with other information media.These related

information media may be in the same Text, other files, or files located on a remote computer.This way of

organizing information connects the information resources distributed in different places, which is convenient

for people to search and retrieve information.

The nature of the Web is hypertext Markup Language (HTML), which can be combined with other Web

technologies (e.g., scripting languages, common gateway interfaces, components, etc.) to create powerful

Web pages. Thus, HYPERtext Markup Language (HTML) is the foundation of World Wide Web (Web)

programming, that is, the World Wide Web is based on hypertext. Hypertext Markup Language is called

hypertext Markup language because the text contains so-called "hyperlink" points.

You can build your own WEB site using HTML, which runs on the browser and is parsed by the browser.

Example analysis is shown in the figure below:

<!DOCTYPE html>:Declare it as an HTML5 document

<html>:Is the root element of an HTML page

<head>:Contains meta data for the document, such as < meta charset="utf-8"> Define the

web page encoding format to UTF-8.

<title>:Notesthe title of the document

<body>:Contains visible page content

<h1>:Define a big heading

<p>:Define a paragraph

For more information, please visit: https://developer.mozilla.org/en-US/docs/Web/HTML

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 22 Smart Home 250 www.freenove.com █

Circuit

Connect Freenove ESP8266 to the computer using a USB cable.

Code

Move the program folder “Freenove_Super_Starter_Kit_for_ESP8266/Python/Python_Codes” to disk(D)

in advance with the path of “D:/Micropython_Codes”.

Open “Thonny”, click “This computer”  “D:”  “Micropython_Codes” 

“30.1_Control_LED_through_Web”. and double click “Control_LED_through_Web”.

30.1_Control_LED_through_Web

Enter the correct Router

name and password.

http://www.freenove.com/

Any concerns?  support@freenove.com

251 Chapter 22 Smart Home

█ www.freenove.com

Because the names and passwords of routers in various places are different, before the Code runs, users need

to enter the correct router’s name and password in the box as shown in the illustration above.

After making sure the router name and password are entered correctly, compile and upload codes to

ESP8266, wait for ESP8266 to connect to your router and print the IP address assigned by the router to

ESP8266 in “Shell”.

When ESP8266 successfully connects to “ssid”, “Shell” displays the IP address assigned to ESP8266 by the

router. Access http://192.168.1.45 in a computer browser on the LAN. As shown in the following figure:

You can click the corresponding button to control the LED on and off.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

from machine import Pin

import time

import socket

import network

set led pin

led = Pin(2, Pin.OUT)

ssid = '********' #Enter the router name

password = '********' #Enter the router password

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 22 Smart Home 252 www.freenove.com █

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

wifi_status = network.WLAN(network.STA_IF)

wifi_status.active(True)

wifi_status.connect(ssid, password)

check wifi connected

while wifi_status.isconnected() == False:

 print('Wifi lost connect...')

if connected

print('Wifi connect successful')

print(wifi_status.ifconfig())

def WebPage():

 if led.value() == 1:

 gpio_state = 'OFF'

 else:

 gpio_state = 'ON'

 # html code ...

 html = """

 <html>

 <head>

 <title>ESP8266 Web Server</title>

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <link rel="icon" href="data:,">

 <style>

 html{font-family: Helvetica; display:inline-block; margin: 0px auto; text-

align: center;}

 h1{color: #0F3376; padding: 2vh;}

 p{font-size: 1.5rem;}

 button{display: inline-block; background-color: #4286f4; border: none;border-

radius: 4px; color: white; padding: 16px 40px; text-decoration: none; font-size: 30px; margin:

2px; cursor: pointer;}

 button2{background-color: #4286f4;}

 </style>

 </head>

 <body> <h1>ESP8266 Web Server</h1>

 <p>GPIO state: """ + gpio_state + """</p>

 <p><button class="button">ON</button></p>

 <p><button class="button button2">OFF</button></p>

 </body>

 </html>

 """

 return html

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

http://www.freenove.com/

Any concerns?  support@freenove.com

253 Chapter 22 Smart Home

█ www.freenove.com

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

s.bind(('', 80))

s.listen(5)

try:

 while True:

 conn, addr = s.accept()

 print('Connection: %s' % str(addr))

 req = conn.recv(1024)

 req = str(req)

 print('Connect = %s' % req)

 led_on = req.find('/?led=on')

 led_off = req.find('/?led=off')

 if led_on == 6:

 print('LED ON')

 led.value(0)

 else:

 print('LED OFF')

 led.value(1)

 if led.value() == 1:

 gpio_state = 'OFF'

 else:

 gpio_state = 'ON'

 response = WebPage()

 conn.send('HTTP/1.1 200 OK\n')

 conn.send('Content-Type: text/html\n')

 conn.send('Connection: close\n\n')

 conn.sendall(response)

 conn.close()

except:

 pass

Import socket module and Import network module.

3

4

import socket

import network

Enter correct AP name and password.

3

4

ssid = '********' #Enter the router name

password = '********' #Enter the router password

Set ESP8266 in Station mode and connect it to your router.

12

13

14

wifi_status = network.WLAN(network.STA_IF)

wifi_status.active(True)

wifi_status.connect(ssid, password)

“Shell” displays the IP address assigned to ESP8266.

20 print(wifi_status.ifconfig())

Click the button on the web page to control the LED light on and off.

55

56

 if led_on == 6:

 print('LED ON')

http://www.freenove.com/

Any concerns?  support@freenove.com

Chapter 22 Smart Home 254 www.freenove.com █

57

58

59

60

61

62

63

64

 led.value(0)

 else:

 print('LED OFF')

 led.value(1)

 if led.value() == 1:

 gpio_state = 'OFF'

 else:

 gpio_state = 'ON'

http://www.freenove.com/

Any concerns?  support@freenove.com

255 What’s next?

█ www.freenove.com

What’s next?

Thanks for your reading. This tutorial is all over here. If you find any mistakes, omissions or you have other

ideas and questions about contents of this tutorial or the kit and etc., please feel free to contact us:

support@freenove.com

We will check and correct it as soon as possible.

If you want learn more about ESP8266, you view our ultimate tutorial:

https://github.com/Freenove/Freenove_Super_Starter_Kit_for_ESP8266/archive/master.zip

If you want to learn more about Arduino, Raspberry Pi, smart cars, robots and other interesting products in

science and technology, please continue to focus on our website. We will continue to launch cost-effective,

innovative and exciting products.

http://www.freenove.com/

End of the Tutorial

Thank you again for choosing Freenove products.

http://www.freenove.com/
mailto:support@freenove.com
https://github.com/Freenove/Freenove_Ultimate_Starter_Kit_for_ESP8266/archive/master.zip
http://www.freenove.com/

	Welcome
	Contents
	Prepare
	ESP8266

	Chapter 0 Ready (Important)
	0.1 Installing Thonny (Important)
	Downloading Thonny
	Installing on Windows

	0.2 Basic Configuration of Thonny
	0.3 Installing CH340 (Important)
	Windows
	Check whether CH340 has been installed
	Installing CH340

	MAC

	0.4 Burning Micropython Firmware (Important)
	Downloading Micropython Firmware
	Burning a Micropython Firmware

	0.5 Testing codes (Important)
	Testing Shell Command
	Running Online
	Running Offline（Important）

	0.6 Thonny Common Operation
	Uploading Code to ESP8266
	Downloading Code to Computer
	Deleting Files from ESP8266’s Root Directory
	Deleting Files from your Computer Directory
	Creating and Saving the code

	Chapter 1 LED (Important)
	Project 1.1 Blink
	Component List
	Power

	Code
	01.1_Blink
	Uploading code to ESP8266
	How to import python files
	Reference

	Project 1.2 Blink
	Component List
	Component knowledge
	LED
	Resistor
	Breadboard
	Power

	Circuit
	Code
	01.2_Blink
	Uploading code to ESP8266

	Chapter 2 Button & LED
	Project 2.1 Button & LED
	Component List
	Component knowledge
	Push button

	Circuit
	Code
	02.1_ButtonAndLed
	Upload Code to ESP8266

	Project 2.2 MINI table lamp
	Debounce for Push Button
	Code
	02.2_Tablelamp
	Upload code to ESP8266

	Chapter 3 LED Bar
	Project 3.1 Flowing Light
	Component List
	Component knowledge
	LED bar

	Circuit
	Code
	03.1_FlowingLight
	Reference

	Chapter 4 Analog & PWM
	Project 4.1 Breathing LED
	Component List
	Related knowledge
	Analog & Digital
	PWM
	ESP8266 and PWM

	Circuit
	Code
	04.1_BreatheLight
	Reference

	Project 4.2 Meteor Flowing Light
	Component List
	Circuit
	Code
	04.2_FlowingLight
	How to import a custom python module

	Chapter 5 RGBLED
	Project 5.1 Random Color Light
	Component List
	Related knowledge
	Circuit
	Code
	05.1_RandomColorLight
	Reference

	Project 5.2 Gradient Color Light
	05.2_GradientColorLight

	Chapter 6 NeoPixel
	Project 6.1 NeoPixel
	Component List
	Related knowledge
	Freenove 8 RGB LED Module

	Circuit
	Code
	06.1_Neopixel
	Reference

	Project 6.2 Rainbow Light
	Code
	06.2_Rainbow_light

	Chapter 7 Buzzer
	Project 7.1 Doorbell
	Component List
	Component knowledge
	Buzzer
	Transistor

	Circuit
	Code
	07.1_Doorbell

	Project 7.2 Alertor
	Code
	07.2_Alertor

	Chapter 8 Serial Communication
	Project 8.1 Serial Print
	Component List
	Related knowledge
	Serial communication
	Serial port on ESP8266

	Circuit
	Code
	08.1_Serial_Print
	Reference

	Project 8.2 Serial Read and Write
	Code
	08.2_Serial_Read_and_Write

	Chapter 9 ADC Converter
	Project 9.1 Read the Voltage of Potentiometer
	Component List
	Related knowledge
	ADC
	ADC on ESP8266

	Component knowledge
	Potentiometer
	Rotary potentiometer

	Circuit
	Code
	09.1_AnalogRead
	Reference

	Chapter 10 Potentiometer & LED
	Project 10.1 Soft Light
	Component List
	Circuit
	Code
	10.1_Soft_LED

	Project 10.2 Color Light
	Component List
	Circuit
	Code
	10.2_Color_Light

	Project 10.3 Soft Rainbow Light
	Component List
	Circuit
	Code
	10.3_Soft_Rainbow_Light

	Chapter 11 Photoresistor & LED
	Project 11.1 NightLamp
	Component List
	Component knowledge
	Photoresistor

	Circuit
	Code
	11.1_Nightlamp

	Chapter 12 Thermistor
	Project 12.1 Thermometer
	Component List
	Component knowledge
	Thermistor

	Circuit
	Code
	12.1_Thermometer

	Chapter 13 74HC595 & LED Bar Graph
	Project 13.1 Flowing Water Light
	Component List
	Related knowledge
	74HC595

	Circuit
	Code
	13.1_Flowing_Water_Light
	Reference

	Chapter 14 74HC595 & 7-Segment Display.
	Project 14.1 7-Segment Display.
	Component List
	Component knowledge
	7-segment display

	Circuit
	Code
	14.1_74HC595_and_7_segment_display

	Chapter 15 Motor & Driver
	Project 15.1 Control Motor with Potentiometer
	Component List
	Component knowledge
	L293D

	Circuit
	Code
	17.1_Motor_And_Driver

	Chapter 19 Stepper Motor
	Project 19.1 Stepping Motor
	Component List
	Component knowledge
	Stepper Motor x1
	ULN2003 Stepping motor driver

	Circuit
	Code
	19.1_Stepping_Motor
	Reference

	Chapter 17 LCD1602
	Project 17.1 LCD1602
	Component List
	Component knowledge
	I2C communication
	LCD1602 communication'

	Circuit
	Code
	20.1_I2C_LCD1602
	Reference

	Chapter 18 Ultrasonic Ranging
	Project 18.1 Ultrasonic Ranging
	Component List
	Component Knowledge
	Circuit
	Code
	21.1_Ultrasonic_Ranging

	Project 18.2 Ultrasonic Ranging
	Component List and Circuit
	Code
	21.2_Ultrasonic_Ranging
	Reference

	Chapter 19 Infrared Remote
	Project 19.1 Infrared Remote Control
	Component List
	Component knowledge
	Infrared Remote
	Infrared receiver

	Circuit
	Code
	23.1_Infrared_Remote
	Reference

	Project 19.2 Control LED through Infrared Remote
	Component List
	Circuit
	Code
	23.2_Control_LED_through_Infrared_Remote

	Chapter 20 WiFi Working Modes
	Project 20.1 Station mode
	Component List
	Component knowledge
	Station mode

	Circuit
	Code
	28.1_Station_mode
	Reference

	Project 20.2 AP mode
	Component List & Circuit
	Component knowledge
	AP mode

	Circuit
	Code
	28.2_AP_mode
	Reference

	Project 20.3 AP+Station mode
	Component List
	Component knowledge
	AP+Station mode

	Circuit
	Code
	28.3_AP+STA_mode

	Chapter 21 TCP/IP
	Project 21.1 As Client
	Component List
	Component knowledge
	TCP connection
	Install Processing
	Use Server mode for communication

	Circuit
	Code
	29.1_TCP_as_Client
	Reference

	Project 21.2 As Server
	Component List
	Circuit
	Code
	29.2_TCP_as_Server

	Chapter 22 Smart Home
	Project 22.1 Control_LED_through_Web
	Component List
	Component knowledge
	HTML

	Circuit
	Code
	30.1_Control_LED_through_Web

	What’s next?
	End of the Tutorial

